PCFGs, Topic Models, Adaptor Grammars and Learning Topical Collocations and the Structure of Proper Names

> Mark Johnson Department of Computing Macquarie University Mark.Johnson@mq.edu.au

> > July 4, 2010



#### Outline

- LDA topic models as PCFGs
- Adaptor grammars
- Finding topic-specific collocations
- Learning the structure of proper nouns
- Conclusion



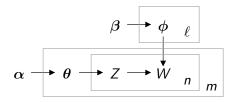
## LDA topic models

- LDA topic models are generative models for documents
  - identifies documents about similar topics
  - identifies words characteristic of topics
- Each topic *i* is a distribution over words  $\phi_i$
- Each document j has a *distribution*  $\theta_j$  over topics
- To generate document *j*:
  - for each word position in document:
    - choose a topic z according to  $\theta_j$ , and then
    - choose a word belonging to that topic according to  $\phi_z$
- "Sparse priors" on  $\phi$  and heta
  - $\Rightarrow$  most documents have few topics
  - $\Rightarrow$  most topics have few words
- Bayesian inference (Gibbs sampling, Variational Bayes) See: Blei, Ng and Jordan (2002), Griffiths and Steyvers (2004)



#### LDA topic models: formal description

$$\begin{array}{lll} \phi_i & \sim & \mathrm{Dir}(\beta) & i = 1, \ldots, \ell = \text{number of topics} \\ \theta_j & \sim & \mathrm{Dir}(\alpha) & j = 1, \ldots, m = \text{number of documents} \\ z_{j,k} & \sim & \theta_j & j = 1, \ldots, m \\ & & & k = 1, \ldots, n = \text{number of words in a document} \\ w_{j,k} & \sim & \phi_{z_{j,k}} & j = 1, \ldots, m \\ & & & k = 1, \ldots, n \end{array}$$





## **Context-Free Grammars**

- A CFG (N, W, R, S) defines sets of trees  $T_X$  for each  $X \in N \cup W$ :
  - if  $X \in W$  then  $\mathcal{T}_X = \{X\}$  (the 1-node tree labelled X)
  - if  $X \in N$  then:

$$\mathcal{T}_X = \bigcup_{X \to B_1 \dots B_n \in R_X} \operatorname{TREE}_X(\mathcal{T}_{B_1}, \dots, \mathcal{T}_{B_n})$$

where  $R_A = \{A \rightarrow \beta : A \rightarrow \beta \in R\}$  for each  $A \in N$ , and

$$\mathrm{TREE}_X(\mathcal{T}_{B_1},\ldots,\mathcal{T}_{B_n}) = \left\{ \begin{array}{cc} X & t_i \in \mathcal{T}_{B_i}, \\ \overbrace{t_1 \ldots t_n} & i = 1,\ldots,n \end{array} \right\}$$

That is,  $\text{TREE}_X(\mathcal{T}_{B_1}, \ldots, \mathcal{T}_{B_n})$  consists of the set of trees with whose root node is labelled X and whose *i*th child is a member of  $\mathcal{T}_{B_i}$ .



## Probabilistic Context-Free Grammars

- A PCFG is a CFG (N, W, R, S) and multinomials θ<sub>X</sub> over R<sub>X</sub> for each X ∈ N
  - $\theta_{X \to \beta}$  is the probability of X expanding to  $\beta$
- A PCFG associates each X ∈ N ∪ W with a distribution G<sub>X</sub> over trees T<sub>X</sub>
  - if  $X \in W$  then  $G_X(X) = 1$
  - if  $X \in N$  then:

$$G_X(t) = \sum_{X \to B_1 \dots B_n \in R_X} \theta_{X \to B_1 \dots B_n} \operatorname{TD}_X(G_{B_1}, \dots, G_{B_n})(t)$$
 (1)

where:

$$\mathrm{TD}_{A}(G_{1},\ldots,G_{n})\left(\begin{array}{c}X\\ \overbrace{t_{1}\ldots t_{n}}\end{array}\right) = \prod_{i=1}^{n}G_{i}(t_{i}).$$

That is,  $TD_A(G_1, \ldots, G_n)$  is a distribution over  $\mathcal{T}_A$  where each subtree  $t_i$  is generated independently from  $G_i$ .

## Bayesian PCFGs

 Place Dirichlet priors Dir(α<sub>X</sub>) on each rule probability multinomial θ<sub>X</sub> for each X ∈ N

$$\theta_X \sim \operatorname{Dir}(\alpha_X) \ X \in N$$

- "Sparse priors"  $\Rightarrow$  prefer to use as few rules as possible
- Unsupervised Bayesian inference for PCFGs from strings:
  - MCMC sampling
  - Variational Bayes

See: Kurihara and Sato (2006), Johnson et al (2007)



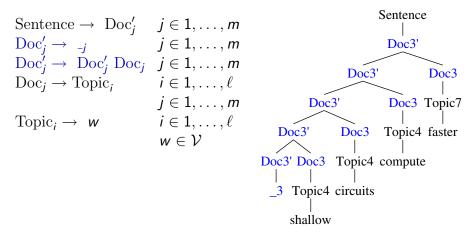
## LDA topic models as PCFGs (1)

• Prefix strings from document *j* with a *document identifier* "-*i*"



# LDA topic models as PCFGs (2)

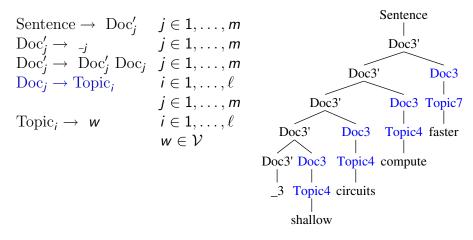
• Spine propagates document id up through tree





## LDA topic models as PCFGs (3)

•  $Doc_i \rightarrow Topic_i$  rules map *documents to topics* 





# LDA topic models as PCFGs (4)

•  $\operatorname{Topic}_i \to w$  rules map *topics to words* 

Sentence 
$$\rightarrow$$
 Doc'\_{j}  $j \in 1, ..., m$   
Doc'\_{j}  $\rightarrow \ _{-j}$   $j \in 1, ..., m$   
Doc'\_{j}  $\rightarrow$  Doc'\_{j} Doc\_{j}  $j \in 1, ..., m$   
Doc\_{j}  $\rightarrow$  Topic\_{i}  $i \in 1, ..., \ell$   
 $j \in 1, ..., \ell$   
Topic\_{i}  $\rightarrow w$   $i \in 1, ..., \ell$   
 $w \in \mathcal{V}$   
Doc3' Doc3 Topic7  
Doc3' Doc3 Topic4 faster  
Doc3' Doc3 Topic4 faster  
 $\downarrow$   $\downarrow$   $\downarrow$   
Doc3' Doc3 Topic4 compute  
 $\downarrow$   $\downarrow$   $\downarrow$   
Sentence  
Doc3' Doc3'  
Doc3' Doc3 Topic4 faster  
 $\downarrow$   $\downarrow$   $\downarrow$   
 $\downarrow$   $\downarrow$   $\downarrow$   
Shallow

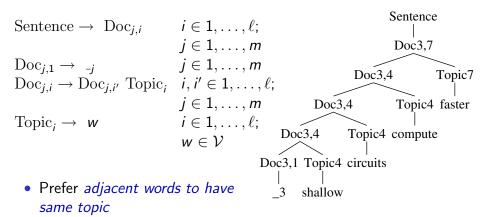


## LDA topic models as PCFGs (5)

- Not suggesting blind use of PCFG inference for topic models
  - One iteration of LDA inference is *linear* in document length
  - One iteration of PCFG inference is *cubic* in document length
- Reduction of LDA topic models to PCFGs suggests ways of extending both kinds of models



## "Sticky" topic models



- Doc<sub>*j*,*i*</sub> means "document *j*, topic *i*"
- Non-uniform Dirichlet prior disprefers topic shift

•  $\alpha_{\text{Doc}_{j,i} \to \text{Doc}_{j,i} \text{ Topic}_i} \gg \alpha_{\text{Doc}_{j,i} \to \text{Doc}_{j,i'} \text{ Topic}_i}$  for  $i' \neq i$ 

#### Outline

#### LDA topic models as PCFGs

#### Adaptor grammars

Finding topic-specific collocations

Learning the structure of proper nouns

Conclusion



## From Multinomials to Dirichlet Processes

- Dirichlet Processes (DPs) are the *infinite-dimensional* generalisation of Dirichlet-Multinomials
- *Predictive distribution:* predict  $z_{n+1}$  given observations
  - $z = (z_1, \dots, z_n)$ Finite set of outcomes  $(1, \dots, m)$ : Dirichlet-multinomial with prior  $\alpha = (\alpha_1, \dots, \alpha_m)$

$$P(Z_{n+1} = k \mid z) \propto n_k(z) + \alpha_k$$

where  $n_k(z)$  is the number of times k appears in  $z = (z_1, \ldots, z_n)$ 

Infinite set of outcomes Ω:
 Dirichlet process DP(α, P<sub>0</sub>) with base distribution P<sub>0</sub>(Z) and concentration parameter α

$$P(Z_{n+1} = z' \mid z) \propto n_{z'}(z) + \alpha P_0(z')$$



#### Dirichlet Processes as Adaptors

• DPs generalise Dirichlet-multinomials

$$P(Z_{n+1} = z' \mid z) \propto n_{z'}(z) + \alpha P_0(z')$$

- DPs follow a "rich get richer" law
  - frequent outcomes are increasingly likely to be predicted
- The DP is stochastic:

in general, every sample  $\boldsymbol{z} = (z_1, z_2, \ldots)$  is different

- $\Rightarrow$  DPs map a base distribution  $P_0$  to a distribution over distributions  $DP(\alpha, P_0)$
- Pitman-Yor Processes (PYPs) generalise Dirichlet Processes
- An adaptor is a function that maps a base distribution  $P_0$  to a distribution over distributions with the same support as  $P_0$ 
  - Dirichlet Processes and Pitman-Yor Processes are adaptors



## Adaptor grammars as generalised PCFGs

- An adaptor grammar is a PCFG with a set A ⊆ N of adapted nonterminals, and adaptors C<sub>X</sub> for each X ∈ A
- Dirichlet Process Adaptor Grammar:

(

- If  $X \in W$  then  $G_X(X) = 1$  (all mass on singular tree X)
- If  $X \in N \setminus A$  is *not adapted* then X expands as in PCFG, i.e.,:

$$G_X = \sum_{X \to Y_1 \dots Y_m \in R_X} \theta_{X \to Y_1 \dots Y_m} \mathrm{TD}_X(G_{Y_1}, \dots, G_{Y_m})$$

• If  $X \in A$  is *adapted*, then PCFG distribution is adapted:

$$\begin{array}{lll} G_X & \sim & \mathrm{DP}(\alpha, H_X) \\ H_X & = & \sum_{X \to Y_1 \dots Y_m \in R_X} \theta_{X \to Y_1 \dots Y_m} \mathrm{TD}_X(G_{Y_1}, \dots, G_{Y_m}) \end{array}$$

Other kinds of adaptor grammars use different adaptors
 *Pitman-Yor adaptor grammars* use Pitman-Yor Processes as
 ACCUARIE MURERSITY Maptors

#### Predictive distribution of DP adaptor grammars

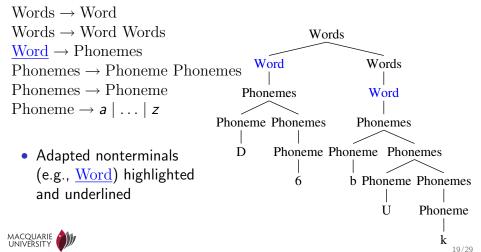
- Predictive distribution: predict next tree  $t_{n+1}$  given previously generated trees  $t = (t_1, \ldots, t_n)$
- Predictive model "caches" adapted subtrees:
  - ► An *unadapted nonterminal* B expands using  $B \rightarrow \beta$  with probability  $\theta_{B \rightarrow \beta}$
  - Each adapted nonterminal B is associated with a DP that caches previously generated subtrees in T<sub>B</sub>
  - An *adapted nonterminal B* expands:
    - to a subtree  $t' \in \mathcal{T}_B$  probability proportional to the number of times t' was previously generated
    - using  $B \rightarrow \beta$  with probability proportional to  $\alpha \, \theta_{B \rightarrow \beta}$



## Adaptor grammars for word segmentation

- Input: phoneme sequences with *sentence boundaries* (Brent)
- Task: identify word boundaries, and hence words

 $y \,{}_{\scriptscriptstyle \Delta} u \,{}_{\scriptscriptstyle \Delta} w \,{}_{\scriptscriptstyle \Delta} a \,{}_{\scriptscriptstyle \Delta} n \,{}_{\scriptscriptstyle \Delta} t \,{}_{\scriptscriptstyle \Delta} t \,{}_{\scriptscriptstyle \Delta} u \,{}_{\scriptscriptstyle \Delta} s \,{}_{\scriptscriptstyle \Delta} i \,{}_{\scriptscriptstyle \Delta} D \,{}_{\scriptscriptstyle \Delta} 6 \,{}_{\scriptscriptstyle \Delta} b \,{}_{\scriptscriptstyle \Delta} U \,{}_{\scriptscriptstyle \Delta}$ 



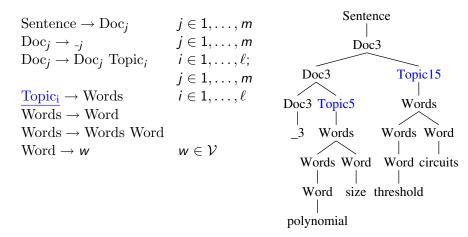
#### Outline

- LDA topic models as PCFGs
- Adaptor grammars
- Finding topic-specific collocations
- Learning the structure of proper nouns
- Conclusion



#### Topic model with collocations

• Combines PCFG topic model and segmentation adaptor grammar





## Finding topical collocations in NIPS abstracts

- Run topical collocation adaptor grammar on NIPS corpus
- Run with  $\ell = 20$  topics (i.e., 20 distinct  $\text{Topic}_i$  nonterminals)
- Corpus is segmented by punctuation
  - terminal strings are fairly short
  - $\Rightarrow$  inference is fairly efficient
- Used Pitman-Yor adaptors
  - ▶ sampled Pitman-Yor *a* and *b* parameters
  - flat and "vague Gamma" priors on Pitman-Yor a and b parameters
  - See: Griffiths et al (2007), Johnson and Goldwater (2009)



## Sample output on NIPS corpus, 20 topics

- Multiword subtrees learned by adaptor grammar:
  - $T\_0 \to \text{gradient descent}$
  - $T\_0 \rightarrow cost \ function$
  - $T\_0 \rightarrow fixed \ point$
  - $T\_0 \rightarrow learning \ rates$
  - $T\_3 \rightarrow membrane \ potential$
  - $T\_3 \rightarrow action \ potentials$
  - $T_{-}3 \rightarrow visual \ system$
  - $T\_3 \rightarrow \text{ primary visual cortex}$
- Sample skeletal parses:

- $T_-1 \rightarrow \text{associative memory}$
- $T_-\!1 \rightarrow \text{standard deviation}$
- $T_-\!1 \to \text{ randomly chosen}$
- $T_{-}1 \rightarrow hamming \ distance$
- $T_{-}10 \rightarrow ocular \ dominance$
- $T\_10 \rightarrow visual \ field$
- $T_-10 \, \rightarrow \, nervous \,\, system$
- $T_-10 \, \rightarrow \, action \ potential$
- $_3$  (T\_5 polynomial size) (T\_15 threshold circuits)
- \_4 (T\_11 studied) (T\_19 pattern recognition algorithms)
- \_4 (T\_2 feedforward neural network) (T\_1 implements)
- \_5 (T\_11 single) (T\_10 ocular dominance stripe) (T\_12 low) (T\_3 ocularity) (T\_12 drift rate)



#### Outline

- LDA topic models as PCFGs
- Adaptor grammars
- Finding topic-specific collocations
- Learning the structure of proper nouns
- Conclusion



## Learning the structure of proper nouns

- Grammars offer *structural* and *positional sensitivity* not captured in topic models: can we use this somehow?
- The Penn WSJ assigns flat structures to names and other base NPs
- Identifying structure within names can be useful
  - Bill Clinton and Hillary Clinton are unlikely to corefer because Bill and Hillary are both first names
  - Secretary Clinton and Hillary Clinton can corefer because Secretary is an honorific
- There are many different types of names (e.g., company names, person names)
- Some components of a name can be filled by multi-word sequences
  - ▶ In Jean-Claude van Damme, van Damme is the surname



#### An adaptor grammar for names $NP \rightarrow (A0) (A1) \dots (A6) NP \rightarrow (B0) (B1) \dots (B6)$ $\underline{A0} \rightarrow Word^{+} \qquad \underline{B0} \rightarrow Word^{+}$ $\dots \qquad \dots \qquad \dots$ $\underline{A6} \rightarrow Word^{+} \qquad \underline{B6} \rightarrow Word^{+}$ $NP \rightarrow Unordered^{+} \qquad Unordered \rightarrow Word^{+}$

• Sample parses:

(A0 barrett) (A3 smith)
(A0 albert) (A2 j.) (A3 smith) (A4 jr.)
(A0 robert) (A2 b.) (A3 van dover)
(B0 aim) (B1 prime rate) (B2 plus) (B5 fund) (B6 inc.)
(B0 balfour) (B1 maclaine) (B5 international) (B6 ltd.)
(B0 american express) (B1 information services) (B6 co)
(U abc) (U sports)
(U sports illustrated)
(U sports unlimited)

See: Elsner, Charniak and Johnson (2009)

#### Outline

- LDA topic models as PCFGs
- Adaptor grammars
- Finding topic-specific collocations
- Learning the structure of proper nouns
- Conclusion



### Conclusion

- LDA topic models can be expressed as Bayesian PCFGs
  - makes it easier to combine grammars and topic models
  - may help us to design new topic models that incorporate configurational sensitivity that is easy to express with grammars
- Adaptor grammars are a non-parametric extension of PCFGs which associate probabilities with entire subtrees
- Adaptor grammars can be used to express generalised topic models
  - learning topical collocations
  - learning the structure of names



#### Interested in Bayesian Inference and Language?

#### We're recruiting *PhD students* and *post-docs*.

Contact Mark.Johnson@mq.edu.au for more information.



