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No warranty . . .

Half the money I spend on advertising is wasted.

The problem is: I don’t know which half.

John Wanamaker
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What is computational linguistics?

• Engineering goals — building useful systems
◮ currently relies more heavily on statistics and machine learning

than linguistic theory
◮ not all scientific knowledge has engineering applications

• Scientific goals — understanding computational aspects of
linguistic processes

◮ language comprehension, production and acquisition
(Chomsky’s “use of knowledge of language”)
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Feature-based grammars and parsing

• Circa 1980 GPSG showed how to decompose long-distance
“movement” phenomena into sequences of strictly local
dependencies (feature-passing)

⇒ Explosion of mathematical and computational work in
“unification-based” grammars that continues today

• Parsing with “unification-based” grammars
◮ (computational) linguist devises grammar formalism (e.g.,

typed feature structure constraints)
◮ linguist writes grammar in grammar formalism
◮ computational linguist devises parser (inference engine) for

grammar formalism
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Statistical treebank parsing

• In the late 1980s statistical techniques (e.g., HMMs) became
the dominant approach to speech recognition

• Parsing with statistical treebank parsers
◮ linguist annotates a corpus with parses
◮ computational linguist devises class of statistical models of

parses (e.g., features of model)
◮ computational linguist devises estimation procedure that maps

parsed corpus to statistical model (e.g., feature weights)
◮ computational linguist devises parser for statistical model

• Why has statistical treebank parsing come to dominate

computational linguistics?
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Both approaches involve linguistic knowledge

• Linguists write the grammars used in manual grammar-based
approaches

• Linguists write the annotation guidelines and direct the
annotation effort in statistical treebank parsing

◮ how do corpus and annotation choices affect our statistical
models?

• Corpus-based approach forces annotators to focus on common
constructions (rather than rare constructions that may be
scientifically more interesting)

• Large grammars are difficult to construct and maintain
(software engineering)

• Treebanks are inherently redundant
⇒ errors seem less catastrophic
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Probabilities and grammars

• Abney (1996) showed how to define MaxEnt models over
virtually any linguistic representations

◮ No requirement that features are independent (“context-free”)
⇒ No principled reason why we can’t replicate treebank parsing

techniques with grammar-based representations

• Are our probabilistic models appropriate?
◮ is it reasonable to model P(Sentence)?
◮ perhaps we should estimate (and learn from)

P(Sentence|Meaning) instead?
⇒ requires explicit meaning representation

◮ part of attraction of statistical machine translation
P(English|French), i.e., French as “language of thought”
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Why parse?

• Engineering goal – we hope a general-purpose parser will be
useful for other engineering tasks

⇒ broad coverage
⇒ robust
⇒ good average case performance

• There are robust, broad-coverage grammar-based parsers
◮ HPSG (Miyao and Tsujii, Cholakov et al)
◮ LFG (Maxwell and Kaplan, van Genabith and Way)
◮ CCG (Hockenmaier, Clark and Curran)

• Complex linguistic representations, but their phrase-structure
parsing accuracy is not better than statistical treebank parsers’

• Not that many applications for parsing
◮ often used as language model (keep probabilities, throw away

parses)
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Capturing vs. covering linguistic generalizations

• Capturing a generalization: grammar
accurately describes phenomenon at
appropriate level, e.g., subject-verb
agreement via PERSON and NUMBER

features

• Covering a generalization: model
covers common cases of a
generalization, perhaps indirectly.
E.g., head-to-head POS dependencies

S

.NP

NN

pricethe

DTraises

VBZ

VPNP

NNP

Sam

.

• An “engineering” parser only needs to cover generalizations

• But feature design requires linguistic insight

◮ basic linguistic insights tend to have greatest impact
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Stochastic Lexical Functional Grammar

• Parc LFG parser produces a set of parses (c-
and f-structure pairs) for input sentence

• A set of “feature extractors” count how often
various structures appear in each parse

◮ Local trees (i.e., phrase-structure rules)
◮ Local f-structures (i.e., argument structure

frames)
◮ Long-distance dependency paths
◮ Misc. features: e.g., Coordination features

• Scorer computes “soft max” of weighted linear
combination of feature values

the cat chased the dog

...

[0, 1, 1, 0, ...],
[0, 0, 1, 1, ...],

...

Scorer

0.25, 0.22, ...

Feature extractors

, ,

, ,

− = −

− = −
− = −

− = −

XLE parser (PARC)
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Features in MaxEnt parsing models

• A feature can be any real-valued function of
the parses

• As far as the statistical model is concerned,
the feature vectors are all that matters

◮ details of linguistic representations are
irrelevant so long as they are rich enough to
compute feature vectors

• The most valuable features were defined on
c-structures alone

◮ c-structures are finer-grained than
f-structures

◮ All my f-structure features can be recoded as

c-structure features

• Are there important generalizations that
f-structure features cover better?

the cat chased the dog

...

[0, 1, 1, 0, ...],
[0, 0, 1, 1, ...],

...

Scorer

0.25, 0.22, ...

Feature extractors

, ,

, ,

− = −

− = −
− = −

− = −

XLE parser (PARC)
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Discriminative rescoring treebank parser

• Use 50-best parses from Charniak parser

• Log of Charniak’s parse probability is one of
model’s features

⇒ Charniak’s features are imported into model
⇒ concentrate on non-local features not

included in Charniak’s model

• Trained from more data than SLFG system
was ⇒ more accurate

◮ these days it is common to train
grammar-based models from PTB translated
into grammar-based representations

◮ but translated PTB doesn’t contain more
information than original PTB did

, ,

[0, 1, 1, 0, ...],
[0, 0, 1, 1, ...],

...

Scorer

0.25, 0.22, ...

Feature extractors

the cat chased the dog

Charniak parser

50−best parses
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Conditional estimation for parse rescoring

• Easy to over-fit training data with large number of features

⇒ Regularize by adding a penalty term to log likelihood
◮ L1 penalty term ⇒ sparse feature weight vector
◮ L2 penalty term (Gaussian prior) seems best

• 50-best parses T (s) may not include true parse t⋆(s)

⇒ Train rescorer to prefer parse in Tc(s) closest to t⋆(s)

• Often several parses from 50-best list are equally close to true
parse

⇒ EM-inspired (non-convex) loss function

• Direct numerical optimization with L-BFGS (modified for L1
regularizer) produces best results

Riezler, King, Kaplan, Crouch, Maxwell and Johnson (2002),
Goodman (2004), Andrew and Gao (2007)
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Features for rescoring parses

• Parse rescorer’s features can be any computable function of
parse

• Choice of features is the most important and least understood
aspect of the parser

◮ feature design has a much greater impact on performance than
the learning algorithm

• Features can be based on a linguistic theory (or more than one)

• . . . but need not be
◮ “shot-gun” or “hail Mary” features very useful

• Feature selection: a feature’s values on T ⋆(s) and T (s) \ T ⋆(s)
must differ on at least 5 sentences s ∈ D

• The Charniak parser’s log probability combines all of the
generative parser’s conditional distributions into a single
rescorer feature ⇒ rescoring should never hurt
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Lexicalized and parent-annotated rules
• Lexicalization associates each constituent with its head
• Ancestor annotation provides a little “vertical context”
• Context annotation indicates constructions that only occur in main

clause (c.f., Emonds)
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n-gram rule features generalize rules
• Collects adjacent constituents in a local tree
• Also includes relationship to head (e.g., adjacent? left or right?)
• Parameterized by ancestor-annotation, lexicalization and head-type

• There are 5,143 unlexicalized rule bigram features and 43,480
lexicalized rule bigram features
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Bihead dependency features

DT

A

NN

record

VBZ

has

RB

n’t

VP

VBN

been

VP

.

.NN

date

VBN

set

NP VP

S

(S (NP (NN date)) (VP (VBN set)))

• Bihead dependency features approximate linguistic
function-argument dependencies

• Computed for lexical (≈ semantic) and functional (≈ syntactic)
heads

• One feature for each head-to-head dependency found in training
corpus (70,000 features in all)
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Head trees record all dependencies

• Head trees consist of a (lexical) head, all of its projections and
(optionally) all of the siblings of these nodes

• correspond roughly to TAG elementary trees

• parameterized by head type, number of sister nodes and
lexicalization
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Rightmost branch bias

• The RightBranch feature’s value is the number of nodes on the
right-most branch (ignoring punctuation) (c.f., Charniak 00)

• Reflects the tendancy toward right branching in English
• Only 2 different features, but very useful in final model!
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Constituent Heavyness and location

• Heavyness measures the constituent’s category, its (binned) size
and (binned) closeness to the end of the sentence
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Coordination parallelism (1)

• A CoPar feature indicates the depth to which adjacent
conjuncts are parallel
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Coordination parallelism (2)

• The CoLenPar feature indicates the difference in length in
adjacent conjuncts and whether this pair contains the last
conjunct.
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Word

• A Word feature is a word plus n of its parents (c.f., Klein and
Manning’s non-lexicalized PCFG)

• A WProj feature is a word plus all of its (maximal projection)
parents, up to its governor’s maximal projection
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Constituent “edge neighbour” features
S
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IN NP

(IN over) (NP (DT the . . . ))

• Edge features are a kind of bigram context for constituents

• Would be difficult to incorporate into a generative parser
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Tree n-gram

• A tree n-gram feature is a tree fragment that connect sequences
of adjacent n words, for n = 2, 3, 4 (c.f. Bod’s DOP models)

• lexicalized and non-lexicalized variants

• There are 62,487 tree n-gram features
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Experimental setup

• Feature tuning experiments done using Collins’ split:
sections 2-19 as train, 20-21 as dev and 24 as test

• Tc(s) computed using Charniak 50-best parser

• Features which vary on less than 5 sentences pruned

• Optimization performed using LMVM optimizer from
Petsc/TAO optimization package or Averaged Perceptron

• Regularizer constant c adjusted to maximize f-score on dev
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Evaluating features

• The feature weights are not that indicative of how important a
feature is

• The MaxEnt ranker with regularizer tuning takes approx 1 day
to train

• The averaged perceptron algorithm takes approximately 2
minutes

◮ used in experiments comparing different sets of features
◮ Used to compare models with the following features:

NLogP Rule NGram Word WProj RightBranch Heavy

NGramTree HeadTree Heads Neighbours CoPar

CoLenPar
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Adding one feature class

• Averaged perceptron baseline with only base parser log prob
feature

◮ section 20–21 f-score = 0.894913
◮ section 24 f-score = 0.889901
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Subtracting one feature class

• Averaged perceptron baseline with all features
◮ section 20–21 f-score = 0.906806
◮ section 24 f-score = 0.902782
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Feature selection is hard!

Averaged perceptron feature selection

f-score on sections 20-21

f-
sc

or
e

on
se

ct
io

n
24

0.9110.910.9090.9080.9070.9060.9050.9040.9030.9020.901

0.908

0.906

0.904

0.902

0.9

0.898

0.896

0.894

0.892

• Greedy feature selection using averaged perceptron optimizing f-score
on sec 20–21

• All models also evaluated on section 24
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Comparing estimators

• Training on sections 2–19, regularizer tuned on 20–21, evaluate
on 24

Estimator # features sec 20-21 sec 24

MaxEnt model, p = 2 670,688 0.9085 0.9037
MaxEnt model, p = 1 14,549 0.9078 0.9024
averaged perceptron 523,374 0.9068 0.9028
expected f-score 670,688 0.9084 0.9029

• None of the differences are significant

• Because the exponential model with p = 2 was the first model I
tested new features on, they may be biased to work well with it.
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Conventional grammars are closed-world
• The closed world assumption for grammars

◮ Rules and lexical entries define set of grammatical structures
◮ Everything not grammatical is ungrammatical

• “Parsing as deduction”: parsing is the process of proving the
grammaticality of a sentence

• But: goal is understanding what the speaker’s trying to say;
not determining whether the sentence is grammatical

• My ideal parser would be open-world
◮ even ungrammatical sentences are interpretable

E.g., man bites dog 6= dog bites man
◮ words and constructions we recognize provide information

about sentence’s meaning
◮ unknown words or phrases do not cause interpretation to fail

– parsing and acquisition are two aspects of same process

• Statistical treebank parsers are open-world
◮ every possible tree receives positive probability
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Open-world grammar-based parsing via

relaxation

• Replace “hard” unification equality constraints with “soft”
probabilistic features

◮ e.g., for subject-verb agreement, introduce feature that fires
when subject’s agreement disagrees with verb’s agreement

• Most techniques for making grammar-based parsers
broad-coverage perform grammar or lexicon relaxation

◮ Unknown word lexical entry guesser
◮ Fragment parsing mechanisms

• Under this approach, grammaticality does not play a central
role in parsing

• Statistical treebank parsers relax via smoothing and
Markovization
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Open-world grammar-based parsing via

disfluency model

• Intuition: Ungrammatical sentences are
understood by analogy with grammatical ones

• Possible formulation: noisy channel model where
channel generates disfluencies

◮ source model only generates grammatical

sentences

• We’ve used this kind of model to detect and
correct disfluencies in speech transcripts ,

,

,

grammatical and
disfluent analyses

Noisy channel
(disfluency model)

grammatical analyses

Grammar

the man bites the dog

the man bites the dog

man bites dog
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Statistical models in linguistics

• Scientific side of computational linguistics studies the
computational aspects of language

◮ computation (the meaning-respecting manipulation of
meaning-bearing symbols) is a process

⇒ computational linguistics bears most directly on language
comprehension, production and acquisition

• Recent explosion of interest in:
◮ computational psycholinguistics (esp. sentence processing)

(Bachrach, Hale, Keller, Levy, Roark, etc.)
◮ computational models of language acquisition (esp. phonology

and morphology)
(Albright, Boersma, Frank, Goldsmith, Hayes, Pater, etc.)
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Optimality theory

• Smolensky’s Optimality Theory (OT) seems exquisitely
designed to permit numerophobes perform optimization

• Detailed OT analyses of many aspects of phonology and
morphology

• Optimality Theory is a limiting case of Harmony Theory
which are equivalent to MaxEnt models

◮ OT constraints ≡ MaxEnt features

⇒ Easy for linguists to move from OT analyses to MaxEnt models
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Chomsky ought to be a Bayesian!

P(Grammar | Data)
︸ ︷︷ ︸

Posterior

∝ P(Data | Grammar)
︸ ︷︷ ︸

Likelihood

P(Grammar)
︸ ︷︷ ︸

Prior

• Likelihood measures how well grammar describes data

• Prior expresses knowledge of grammar before data is seen
◮ can be very specific (e.g., Universal Grammar), or
◮ can be generic (e.g., prefer shorter grammars)
◮ can express markedness preferences that can be overridden by

data

• Posterior is distribution over grammars
◮ expresses uncertainty about which grammar is correct

• In principle we can empirically evaluate utility of specific
linguistic universals in language acquisition
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Bayesian updating integrates parsing and learning

P(Grammar | Sentence1:n)
︸ ︷︷ ︸

Updated grammar

∝ P(Sentencen | Grammar)
︸ ︷︷ ︸

≈ parsing

P(Grammar | Sentence1:n−1)
︸ ︷︷ ︸

Previous grammar

• Incremental Bayesian belief updating updates posterior as each
data item is encountered

• With e.g. PCFGs the update process requires computing
expected rule counts, and adding these to rule count sums.

• Sampling the sentence’s likely parses is a general way of
computing these expectations

⇒ Learning might be a low-cost by-product of parsing
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Non-parametric Bayesian inference

• Most standard learning methods are based on optimizing a

function of a finite vector of real-valued parameters

• Learn rules or structures by iterating:
◮ generate hopefully useful rules/structures
◮ estimate their parameters via a parametric estimator
◮ prune low-probabilty rules/structures

• Non-parametric Bayesian methods provide a theoretically
sound framework for identifying relevant finite subset from
infinite set of entities

◮ example: learn finite set of phonemic forms from infinite set of
potential phonemic forms

◮ Monte Carlo sampling methods
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Computational models of word learning

• During their “word spurt”, children learn words in “one-shot”

• No obvious limit on number of possible words
⇒ non-parametric Bayes

• Learn to segment words from unsegmented broad phonemic

transcription (Brent)

◮ Example: y u w a n t t u s i D 6 b u k

• Goldwater (2006) learns a bigram model of word sequences
without being told what the words are

◮ Learning inter-word dependencies improves word segmentation
◮ Learning intra-word structure (syllable structure) also helps

• There are learning algorithms whose computationally most
demanding component is sampling parses of input sequences

60 / 62



Outline

Grammar-based and statistical parsing

From grammar-based to treebank parsing

Features in our rescoring parser

Open-world grammars and parsing

Statistical models of language acquisition and comprehension

Conclusion

61 / 62



Conclusion

• Be clear about why you’re building any computational model
◮ usual engineering goals ⇒ average case matters
◮ open-world parsing (unknown words, fragment parsing)
◮ don’t have to capture a generalization in order to cover it
◮ what does determining grammaticality have to do with

comprehension?

• Statistical models of processing and acquisition are having a
major impact

◮ probabilistic parsing models are having an increasing impact in
psycholinguistics and neurolinguistics

◮ (non-parametric) Bayesian models provide new ways of viewing
language acquisition
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