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Talk outline

• Statistical parsing models

• Discriminatively trained reranking models

– features for selecting good parses

– estimation methods

– evaluation

• Conclusion and future work
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Approaches to statistical parsing

• Kinds of models: “Rationalist” vs. “Empiricist”

– based on linguistic theories (CCG, HPSG, LFG, TAG, etc.)

• typically use specialized representations

– models of trees in a training corpus (Charniak, Collins, etc.)

• Grammars are typically hand-written or extracted from a corpus

(or both?)

– both methods require linguistic knowledge

– each method is affected differently by

• lack of linguistic knowledge (or resources needed to enter it)

• errors and inconsistencies
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Features in linear models

• (Statistical) features are real-valued functions of parses (e.g., in a

PCFG, the number of times a rule is used in a tree)

• A model associates a real-valued weight with each feature (e.g.,

the log of the rule’s probability)

• The score of a parse is the weighted sum of its feature values

(the tree’s log probability)

• Higher scoring parses are more likely to be correct

• Computational complexity of estimation (training) depends on

how these features interact
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Feature dependencies and complexity

• “Generative models” (features and constraints induce

tree-structured dependencies, e.g., PCFGs, TAGs)

– maximum likelihood estimation is computationally cheap

(counting occurences of features in training data)

– crafting a model with a given set of features can be difficult

• “Conditional” or “discriminative models” (features have

arbitrary dependencies, e.g., SUBGs)

– maximum likelihood estimation is computationally intractible

(as far as we know)

– conditional estimation is computationally feasible but

expensive

– features can be arbitrary functions of parses
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Why coarse-to-fine discriminative reranking?

• Question: What are the best features for statistical parsing?

• Intuition: The choice of features matters more than the grammar

formalism or parsing method

• Are global features of the parse tree useful?

⇒ Choose a framework that makes experimenting with features as

easy as possible

• Coarse-to-fine discriminative reranking is such a framework

– features can be arbitrary functions of parse trees

– computational complexity is manageable

• Why a Penn tree-bank parsing model?
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The parsing problem

Y
y ∈ Y(x) is a parse for string x

Y(x) = set of parses of string x

• Y = set of all parses,Y(x) = set of parses of string x

• f = (f1, . . . , fm) are real-valued feature functions

(e.g., f22(y) = number of times an S dominates a VP in y)

• So f(y) = (f1(y), . . . , fm(y)) is real-valued vector

• w = (w1, . . . , wm) is a weight vector, which we learn from

training data

• Sw(y) = w · f(y) =
∑m

j=1 wjfj(y) is the score of a parse
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Conditional training

Y
yi

Y(xi) = set of parses of xi

• Labelled training data D = ((x1, y1), . . . , (xn, yn)), where yi is

the correct parse for xi

• Parsing: return the parse y ∈ Y(x) with the highest score

• Conditional training: Find a weight vector w so that the correct

parse yi scores “better” than any other parse in Y(xi)

• There are many different algorithms for doing this (MaxEnt,

Perceptron, SVMs, etc.)
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Another view of conditional training

Correct
parse’s
features

All other parses’ features

sentence 1 [1, 3, 2] [2, 2, 3] [3, 1, 5] [2, 6, 3]

sentence 2 [7, 2, 1] [2, 5, 5]

sentence 3 [2, 4, 2] [1, 1, 7] [7, 2, 1]

. . . . . . . . .

• Training data is fully observed (i.e., parsed data)

• Choose w to maximize score of correct parses relative to other

parses

• Distribution of sentences is ignored

– The models learnt by this kind of conditional training can’t

be used as language models

• Nothing is learnt from unambiguous examples
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A coarse to fine approximation

• The set of parses Y(x) can be

huge!

• Collins Model 2 parser pro-

duces a set of candidate parses

Yc(x) for each sentence x

• The score for each parse is

Sw(y) = w · f(y)

• The highest scoring parse

y? = argmax
y∈Yc(x)

Sw(y)

is predicted correct

string x

yk. . .

. . .f(y1) f(yk)

w · f(y1) w · f(yk). . .

Collins model 2

parses Yc(x)y1

features

scores Sw(y)

(Collins 1999 “Discriminative reranking”)
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Advantages of this approach

• The Collins parser only uses features for which there is a fast

dynamic programming algorithm

• The set of parses Yc(x) it produces is small enough that dynamic

programming is not necessary

• This gives us almost complete freedom to formulate and explore

possible features

• We’re already starting from a good baseline . . .

• . . . but we only produce Penn treebank trees (instead of

something deeper)

• and parser evaluation with respect to the Penn treebank is

standard in the field
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A complication

• Intuition: the discriminative learner should learn the common

error modes of Collins parser

• Obvious approach: parse the training data with the Collins

parser

• When parsed on the training section of the PTB, the Collins

parser does much better on training section than it does on

other text!

• Train the discriminative model from parser output on text

parser was not trained on

• Use cross-validation paradigm to produce discriminative training

data (divide training data into 10 sections)

• Development data described here is from PTB sections 20 and 21
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Another complication

• Training data ((x1, y1), . . . , (xn, yn))

• Each string xi is parsed using Collins

parser, producing a set Yc(xi) of parse

trees

• The correct parse yi might not be in the

Collins parses Yc(xi)

• Let ỹi = argmaxy∈Yc(xi) Fyi
(y) be the

best Collins parse, where Fy′(y) mea-

sures parse accuracy

• Choose w to discriminate ỹi from the

other Yc(xi)

Y

yi ỹi Yc(xi)
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Multiple best parses

Y

yi Yc(xi)

• There can be several Collins parses equally close to the correct parse:

which one(s) should we declare to be the best parse?

• Weighting all close parses equally does not work as well (0.9025) as . . .

• picking the parse with the highest Collins parse probability (0.9036),

but . . .

• letting the model pick its own winner from the close parses (EM-like

scheme in Riezler ’02) works best of all (0.904)
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Baseline and oracle results

• Training corpus: 36,112 Penn treebank trees from sections 2–19,

development corpus 3,720 trees from sections 20–21

• Collins Model 2 parser failed to produce a parse on 115 sentences

• Average |Y(x)| = 36.1

• Model 2 f -score = 0.882 (picking parse with highest Model 2

probability)

• Oracle (maximum possible) f -score = 0.953

(i.e., evaluate f -score of closest parses ỹi)

⇒ Oracle (maximum possible) error reduction 0.601
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Expt 1: Only “old” features

• Features: (1) log Model 2 probability, (9717) local tree features

• Model 2 already conditions on local trees!

• Feature selection: features must vary on 5 or more sentences

• Results: f -score = 0.886; ≈ 4% error reduction

⇒ discriminative training alone can improve accuracy
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Expt 2: Rightmost branch bias

• The RightBranch feature’s value is the number of nodes on the

right-most branch (ignoring punctuation)

• Reflects the tendancy toward right branching

• LogProb + RightBranch: f -score = 0.884 (probably significant)

• LogProb + RightBranch + Rule: f -score = 0.889

ROOT

WDT

That went

over

DT

the

JJ

permissible

NN

line

IN

for

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.PP

VP

S

NP

PP

NP

NP

VBD

IN

NP

ADJP

17



Lexicalized and parent-annotated rules

• Lexicalization associates each constituent with its head

• Parent annotation provides a little “vertical context”

• With all combinations, there are 158,890 rule features
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n-gram rule features generalize rules

• Collects adjacent constituents in a local tree

• Also includes relationship to head

• Constituents can be ancestor-annotated and lexicalized

• 5,143 unlexicalized rule bigram features, 43,480 lexicalized rule

bigram features
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Head to head dependencies

• Head-to-head dependencies track the function-argument

dependencies in a tree

• Co-ordination leads to phrases with multiple heads and

arguments

• With all combinations, there are 121,885 head-to-head features

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

20



Head trees record all dependencies

• Head trees consist of a (lexical) head, all of its projections and

(optionally) all of the siblings of these nodes

• These correspond roughly to TAG elementary trees
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Constituent Heavyness and location

• Heavyness measures the constituent’s category, its (binned) size

and (binned) closeness to the end of the sentence

• There are 984 Heavyness features
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Tree n-gram

• A tree n-gram are tree fragments that connect sequences of

adjacent n words

• There are 62,487 tree n-gram features
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Subject-Verb Agreement

• The SubjVerbAgr features are the POS of the subject NP’s

lexical head and the VP’s functional head

• There are 200 SubjVerbAgr features
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Functional-lexical head dependencies

• The SynSemHeads features collect pairs of functional and lexical

heads of phrases (Grimshaw)

• This captures number agreement in NPs and aspects of other

head-to-head dependencies

• There are 1,606 SynSemHeads features
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Coordination parallelism (1)

• The CoPar feature indicates the depth to which adjacent

conjuncts are parallel

• There are 9 CoPar features
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Coordination parallelism (2)

• The CoLenPar feature indicates the difference in length in

adjacent conjuncts and whether this pair contains the last

conjunct.

• There are 22 CoLenPar features
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Experimental results with all features

• Feature selection: features must vary on parses of at least 5

sentences in training data (a cutoff of 2 improves results)

• In this experiment, 883,936 features

• log loss with Gaussian regularization term: 11
∑

j w2
j

– dev set results: f-score = 0.903–0.904

– section 23 results: f-score = 0.9039 (≈20% error reduction),

47% of sentences have f-score = 1

• exp loss with Gaussian regularization term: 50
∑

j w2
j

– dev set results: f-score = 0.902

• averaged perceptron classifier (very fast!)

– dev set results: f-score = 0.902 (with feature class tuning)
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Which kinds of features are best?

# of features f-score

Treebank trees 375,646 0.901

Correct parses 271,267 0.902

Incorrect parses 876,339 0.903

Correct & incorrect parses 883,936 0.903

• Features from incorrect parses characterize failure modes of

Collins parser

• There are far more ways to be wrong than to be right!
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Feature classes overview

# of feat. av. value s.d. feat. class

1 0.416674 – LogProb

2 -0.376498 0.000265398 RightBranch

9 0.117017 0.0371904 CoPar

22 0.0133718 0.0196021 CoLenPar

200 -0.000552325 0.00364032 SubjVerbAgr

984 -0.00118015 0.00613362 Heavy

1606 0.00145433 0.00196207 SynSemHeads

37068 0.000505719 0.000953109 Word

48623 6.68076e-05 0.00145942 NGram

122189 0.000623527 0.000679083 WProj

160582 0.00063112 0.000969829 Heads

203979 0.000393769 0.000832161 NGramTree

223354 0.000344003 0.000813581 Rule
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Evaluating feature classes

∆ f-score ∆ − logCP ∆ correct ∆ best poss. zeroed class

-0.00909743 3042.76 -123 -132 LogProb

-0.0034855 -107.341 17 -42 Rule

-0.00316443 120.551 -31 -64 NGram

-0.00292884 50.4752 -20 -44 Heads

-0.00248576 73.3785 -18 -25 Heavy

-0.00239372 251.753 -74 -27 RightBranch

-0.00208603 157.478 -19 -31 NGramTree

-0.00199449 130.832 -28 -36 WProj

-0.000761952 11.0709 5 -4 Word

-0.000422497 7.1691 6 -5 CoLenPar

-0.000368866 -14.2518 1 2 SynSemHeads

-0.000230322 11.3504 -9 -4 CoPar

-0.000100725 -14.7814 -2 0 SubjVerbAgr
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Informal error analysis

• Manual examination of first 100 sentences of development data

• Preliminary classification of “type” of parser error

• Multiple errors per sentence were found

Error type Reranker Coarse parser

PP attach 19 3

Coordination 8 2

Category misanalysis 7 1

Other attachment 4 9

Compounding 2 3

Other errors 2 4

14 PTB errors, 7 PTB ambiguities

(Suggested by Yusuke Miyao)
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Sample PP attachment error (1/2)

In composite trading on the New York Stock Exchange, GTE rose $1.25 to

$64.125.
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Sample PP attachment error (2/2)

In composite trading on the New York Stock Exchange, GTE rose $1.25 to

$64.125.
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Coordination error (1/2)

Earlier rate reductions in Texas and California reduced the quarter’s

revenue and operating profit $55 million; a year earlier, operating profit in

telephone operations was reduced by a similar amount as a result of a

provision for a reorganization.
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Coordination error (2/2)

Earlier rate reductions in Texas and California reduced the quarter’s

revenue and operating profit $55 million; a year earlier, operating profit in

telephone operations was reduced by a similar amount as a result of a

provision for a reorganization.

NP

NP

DT

the

NN

quarter

POS

’s

NX

NX

NN

revenue

CC

and

NX

NN

operating

NN

profit

Gold (treebank) tree

36



Category misanalysis error (1/2)

Electrical products’ sales fell to $496.7 million from $504.5 million with

higher world-wide lighting volume offset by lower domestic prices and the

impact of weaker currencies in Europe and South America.
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Category misanalysis (2/2)

Electrical products’ sales fell to $496.7 million from $504.5 million with

higher world-wide lighting volume offset by lower domestic prices and the

impact of weaker currencies in Europe and South America.
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Multiple attachment errors (1/3)

The company wants its business mix to more closely match that of AT&T –

a step it says will help prevent cross subsidization.
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Multiple attachment errors (2/3)

The company wants its business mix to more closely match that of AT&T –

a step it says will help prevent cross subsidization.
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Multiple attachment errors (3/3)

The company wants its business mix to more closely match that of AT&T –

a step it says will help prevent cross subsidization.
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Technical summary

• Generative and discriminative parsers both identify the likely parse y

of a string x, e.g., by estimating P(y|x)

• Generative parsers also define language models, estimate P(x)

• Discriminative estimation doesn’t require feature independence

– suitable for models without tree-structured feature dependencies

• Parsing is equally complex for generative and discriminative parsers

– depends on features used

– coarse-to-fine approaches use one parser to narrow the search

space for another

• Estimation is computationally inexpensive for generative parsers, but

expensive for discriminative parsers

• Because a discriminative parser can use the generative model’s

probability estimate as a feature, discriminative parsers almost never

do worse than the generative model, and often do substantially better.
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Conclusions

• Discriminatively trained parsing models can perform better than

standard generative parsing models

• Features can be arbitrary functions of parse trees

– Non-local features can make a big difference!

– Difficult to tell which features are most useful

– Better evaluation (maybe requires real parsing applications?)

• Coarse-to-fine results in (moderately) efficient algorithms

• The parser’s errors are often recognizable as certain types of

mistakes

– PP attachment is still a serious issue!
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Future directions

• More features (fix those PP attachments!)

• Additional languages (Chinese)

• Richer linguistic representations (WH-dependencies)

• More efficient computational procedures for search and

estimation

– Dynamic programming, approximation methods (variational

methods, best-first or beam search)

• Apply discriminative techniques to applications such as speech

recognition and machine translation
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Discriminative learning in other settings

• Speech recognition

– Take x to be the acoustic signal, Y(x) all strings in

recognizer lattice for x

– Training data: D = ((y1, x1), . . . , (yn, xn)), where yi is

correct transcript for xi

– Features could be n-grams, log parser prob, cache features

• Machine translation

– Take x to be input language string, Y(x) a set of target

language strings (e.g., generated by an IBM-style model)

– Training data: D = ((y1, x1), . . . , (yn, xn)), where yi is

correct translation of xi

– Features could be n-grams of target language strings, word

and phrase correspondences, . . .

45



Regularizer tuning in Max Ent models

• Associate each feature fj with bin b(j)

• Associate regularizer constant βk with feature bin k

• Optimize feature weights α = (α1, . . . , αm) on main training

data M

• Optimize regularizer constants β on held-out data H

LD(α) =
n∏

i=1

Pα(yi|xi), where D = ((y1, x1), . . . , (yn, xn))

α̂(β) = argmax
α

log LM (α) −
m∑

j=1

βb(j)α
2
j

β̂ = argmax
β

log LH(α̂(β))
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Expectation maximization for PCFGs

• Hidden training data: D = (x1, . . . , xn), where xi is a string

• The Inside-Outside algorithm is an Expectation-Maximization

algorithm for PCFGs

p̂ = argmax
p

LD(p), where

LD(p) =
n∏

i=1

Pp(xi) = argmax
p

n∏

i=1

∑

y∈Y(xi)

P(y)

Y(xi)

Y
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Why there is no conditional ML EM

• Conditional ML conditions on the string x

• Hidden training data: D = (x1, . . . , xn), where xi is a string

• The likelihood is the probability of predicting the string xi given

the string xi, a constant function

p̂ = argmax
p

LD(p), where

LD(p) =
n∏

i=1

Pp(xi|xi)

Y

Y(xi)

48


