Probabilistic parsing with a wide variety of features

> Mark Johnson Brown University

#### IJCNLP, March 2004

Joint work with Eugene Charniak (Brown) and Michael Collins (MIT) Supported by NSF grants LIS 9720368 and IIS0095940

## Talk outline

- Statistical parsing models
- Discriminatively trained reranking models
  - features for selecting good parses
  - estimation methods
  - evaluation
- Conclusion and future work

# Approaches to statistical parsing

- Kinds of models: "Rationalist" vs. "Empiricist"
  - based on *linguistic theories* (CCG, HPSG, LFG, TAG, etc.)
    - typically use specialized representations
  - models of trees in a training corpus (Charniak, Collins, etc.)
- Grammars are typically *hand-written* or *extracted from a corpus* (or both?)
  - both methods *require linguistic knowledge*
  - each method is affected differently by
    - lack of linguistic knowledge (or resources needed to enter it)
    - errors and inconsistencies

# Features in linear models

- (Statistical) features are *real-valued functions* of parses (e.g., in a PCFG, the number of times a rule is used in a tree)
- A model associates a *real-valued weight* with each feature (e.g., the log of the rule's probability)
- The *score* of a parse is the weighted sum of its feature values (the tree's log probability)
- Higher scoring parses are more likely to be correct
- Computational complexity of estimation (training) depends on *how these features interact*

# Feature dependencies and complexity

- *"Generative models"* (features and constraints induce *tree-structured dependencies*, e.g., PCFGs, TAGs)
  - maximum likelihood estimation is computationally cheap (counting occurrences of features in training data)
  - crafting a model with a given set of features can be difficult
- *"Conditional"* or *"discriminative models"* (features have arbitrary dependencies, e.g., SUBGs)
  - maximum likelihood estimation is computationally intractible (as far as we know)
  - *conditional estimation* is computationally feasible but expensive
  - features can be *arbitrary functions* of parses

# Why coarse-to-fine discriminative reranking?

- Question: What are the best features for statistical parsing?
- Intuition: The choice of features matters more than the grammar formalism or parsing method
- Are *global features* of the parse tree useful?
- $\Rightarrow$  Choose a framework that makes experimenting with features as easy as possible
  - Coarse-to-fine discriminative reranking is such a framework
    - features can be arbitrary functions of parse trees
    - computational complexity is manageable
  - Why a Penn tree-bank parsing model?

## The parsing problem



- $\mathcal{Y} = \text{set of all parses}, \mathcal{Y}(x) = \text{set of parses of string } x$
- $f = (f_1, \dots, f_m)$  are real-valued *feature functions* (e.g.,  $f_{22}(y)$  = number of times an S dominates a VP in y)
- So  $f(y) = (f_1(y), \dots, f_m(y))$  is real-valued vector
- $w = (w_1, \ldots, w_m)$  is a *weight vector*, which we learn from training data
- $S_w(y) = w \cdot f(y) = \sum_{j=1}^m w_j f_j(y)$  is the *score* of a parse

# **Conditional training**



- Labelled training data  $D = ((x_1, y_1), \dots, (x_n, y_n))$ , where  $y_i$  is the correct parse for  $x_i$
- Parsing: return the parse  $y \in \mathcal{Y}(x)$  with the highest score
- Conditional training: Find a weight vector w so that the correct parse  $y_i$  scores "better" than any other parse in  $\mathcal{Y}(x_i)$
- There are many different algorithms for doing this (MaxEnt, Perceptron, SVMs, etc.)

# Another view of conditional training

|            | Correct<br>parse's<br>features | All other parses' features                            |
|------------|--------------------------------|-------------------------------------------------------|
| sentence 1 | [1,3,2]                        | $\left[2,2,3 ight]\left[3,1,5 ight]\left[2,6,3 ight]$ |
| sentence 2 | $\left[7,2,1 ight]$            | [2,5,5]                                               |
| sentence 3 | [2, 4, 2]                      | $[1,1,7] \; [7,2,1]$                                  |
|            |                                | •••                                                   |

- Training data is *fully observed* (i.e., parsed data)
- Choose *w* to maximize score of *correct* parses relative to other parses
- Distribution of *sentences* is ignored
  - The models learnt by this kind of conditional training can't be used as language models
- Nothing is learnt from unambiguous examples

## A coarse to fine approximation

- The set of parses  $\mathcal{Y}(x)$  can be huge!
- Collins Model 2 parser produces a set of candidate parses
   \$\mathcal{Y}\_c(x)\$ for each sentence \$x\$
- The score for each parse is  $S_w(y) = w \cdot f(y)$
- The highest scoring parse

$$y^{\star} = \operatorname*{argmax}_{y \in \mathcal{Y}_c(x)} S_w(y)$$

is predicted correct

(Collins 1999 "Discriminative reranking")



# Advantages of this approach

- The Collins parser only uses features for which there is a fast dynamic programming algorithm
- The set of parses  $\mathcal{Y}_c(x)$  it produces is small enough that dynamic programming is not necessary
- This gives us almost complete freedom to formulate and explore possible features
- We're already starting from a good baseline ...
- ... but we only produce Penn treebank trees (instead of something deeper)
- and parser evaluation with respect to the Penn treebank is standard in the field

# A complication

- Intuition: the discriminative learner should learn the common error modes of Collins parser
- Obvious approach: parse the training data with the Collins parser
- When parsed on the training section of the PTB, the Collins parser does much better on training section than it does on other text!
- Train the discriminative model from parser output on text parser was not trained on
- Use *cross-validation paradigm* to produce discriminative training data (divide training data into 10 sections)
- $\bullet\,$  Development data described here is from PTB sections 20 and 21

### Another complication

- Training data  $((x_1, y_1), \ldots, (x_n, y_n))$
- Each string  $x_i$  is parsed using Collins parser, producing a set  $\mathcal{Y}_c(x_i)$  of parse trees
- The correct parse  $y_i$  might not be in the Collins parses  $\mathcal{Y}_c(x_i)$
- Let  $\tilde{y}_i = \operatorname{argmax}_{y \in \mathcal{Y}_c(x_i)} F_{y_i}(y)$  be the best Collins parse, where  $F_{y'}(y)$  measures parse accuracy
- Choose w to discriminate  $\tilde{y}_i$  from the other  $\mathcal{Y}_c(x_i)$



### Multiple best parses



- There can be several Collins parses equally close to the correct parse: which one(s) should we declare to be the best parse?
- Weighting all close parses equally does not work as well (0.9025) as ...
- picking the parse with the highest Collins parse probability (0.9036), but ...
- letting the model pick its own winner from the close parses (EM-like scheme in Riezler '02) works best of all (0.904)

### **Baseline and oracle results**

- Training corpus: 36,112 Penn treebank trees from sections 2–19, development corpus 3,720 trees from sections 20–21
- Collins Model 2 parser failed to produce a parse on 115 sentences
- Average  $|\mathcal{Y}(x)| = 36.1$
- Model 2 f-score = 0.882 (picking parse with highest Model 2 probability)
- Oracle (maximum possible) f-score = 0.953 (i.e., evaluate f-score of closest parses  $\tilde{y}_i$ )
- $\Rightarrow$  Oracle (maximum possible) error reduction 0.601

### Expt 1: Only "old" features

- Features: (1) *log Model 2 probability*, (9717) local tree features
- Model 2 already conditions on local trees!
- Feature selection: features must vary on 5 or more sentences
- Results: f-score = 0.886;  $\approx 4\%$  error reduction
- $\Rightarrow$  discriminative training alone can improve accuracy



### Expt 2: Rightmost branch bias

- The RightBranch feature's value is the number of nodes on the right-most branch (ignoring punctuation)
- Reflects the tendancy toward right branching
- LogProb + RightBranch: f-score = 0.884 (probably significant)
- LogProb + RightBranch + Rule: f-score = 0.889



# Lexicalized and parent-annotated rules

- *Lexicalization* associates each constituent with its head
- *Parent annotation* provides a little "vertical context"
- With all combinations, there are 158,890 rule features



### *n*-gram rule features generalize rules

- Collects adjacent constituents in a local tree
- Also includes relationship to head
- Constituents can be ancestor-annotated and lexicalized
- 5,143 unlexicalized rule bigram features, 43,480 lexicalized rule bigram features



## Head to head dependencies

- Head-to-head dependencies track the function-argument dependencies in a tree
- Co-ordination leads to phrases with multiple heads and arguments
- With all combinations, there are 121,885 head-to-head features



# Head trees record all dependencies

- Head trees consist of a (lexical) head, all of its projections and (optionally) all of the siblings of these nodes
- These correspond roughly to TAG elementary trees



# **Constituent Heavyness and location**

- Heavyness measures the constituent's category, its (binned) size and (binned) closeness to the end of the sentence
- There are 984 Heavyness features



> 5 words

=1 punctuation

#### Tree *n*-gram

- A tree *n*-gram are tree fragments that connect sequences of adjacent *n* words
- There are 62,487 tree *n*-gram features



### Subject-Verb Agreement

- The SubjVerbAgr features are the POS of the subject NP's lexical head and the VP's functional head
- There are 200 SubjVerbAgr features



### **Functional-lexical head dependencies**

- The SynSemHeads features collect pairs of functional and lexical heads of phrases (Grimshaw)
- This captures number agreement in NPs and aspects of other head-to-head dependencies
- There are 1,606 SynSemHeads features



# Coordination parallelism (1)

- The CoPar feature indicates the depth to which adjacent conjuncts are parallel
- There are 9 CoPar features



# Coordination parallelism (2)

- The CoLenPar feature indicates the difference in length in adjacent conjuncts and whether this pair contains the last conjunct.
- There are 22 CoLenPar features



CoLenPar feature: (2,true) 6 words

### Experimental results with all features

- Feature selection: features must vary on parses of at least 5 sentences in training data (a cutoff of 2 improves results)
- In this experiment, 883,936 features
- log loss with Gaussian regularization term:  $11 \sum_j w_j^2$ 
  - dev set results: f-score = 0.903-0.904
  - section 23 results: f-score = 0.9039 ( $\approx 20\%$  error reduction), 47% of sentences have f-score = 1
- *exp loss* with Gaussian regularization term:  $50 \sum_j w_j^2$ 
  - dev set results: f-score = 0.902
- averaged perceptron classifier (very fast!)
  - dev set results: f-score = 0.902 (with feature class tuning)

# Which kinds of features are best?

|                            | # of features | f-score |
|----------------------------|---------------|---------|
| Treebank trees             | $375,\!646$   | 0.901   |
| Correct parses             | $271,\!267$   | 0.902   |
| Incorrect parses           | $876,\!339$   | 0.903   |
| Correct & incorrect parses | 883,936       | 0.903   |

- Features from incorrect parses characterize failure modes of Collins parser
- There are far more ways to be wrong than to be right!

#### Feature classes overview

| # of feat. | av. value    | s.d.        | feat. class |
|------------|--------------|-------------|-------------|
| 1          | 0.416674     | _           | LogProb     |
| 2          | -0.376498    | 0.000265398 | RightBranch |
| 9          | 0.117017     | 0.0371904   | CoPar       |
| 22         | 0.0133718    | 0.0196021   | CoLenPar    |
| 200        | -0.000552325 | 0.00364032  | SubjVerbAgr |
| 984        | -0.00118015  | 0.00613362  | Heavy       |
| 1606       | 0.00145433   | 0.00196207  | SynSemHeads |
| 37068      | 0.000505719  | 0.000953109 | Word        |
| 48623      | 6.68076e-05  | 0.00145942  | NGram       |
| 122189     | 0.000623527  | 0.000679083 | WProj       |
| 160582     | 0.00063112   | 0.000969829 | Heads       |
| 203979     | 0.000393769  | 0.000832161 | NGramTree   |
| 223354     | 0.000344003  | 0.000813581 | Rule        |

# **Evaluating feature classes**

| $\Delta$ f-score | $\Delta - \log \mathbf{CP}$ | $\Delta$ correct | $\Delta$ best poss. | zeroed class |
|------------------|-----------------------------|------------------|---------------------|--------------|
| -0.00909743      | 3042.76                     | -123             | -132                | LogProb      |
| -0.0034855       | -107.341                    | 17               | -42                 | Rule         |
| -0.00316443      | 120.551                     | -31              | -64                 | NGram        |
| -0.00292884      | 50.4752                     | -20              | -44                 | Heads        |
| -0.00248576      | 73.3785                     | -18              | -25                 | Heavy        |
| -0.00239372      | 251.753                     | -74              | -27                 | RightBranch  |
| -0.00208603      | 157.478                     | -19              | -31                 | NGramTree    |
| -0.00199449      | 130.832                     | -28              | -36                 | WProj        |
| -0.000761952     | 11.0709                     | 5                | -4                  | Word         |
| -0.000422497     | 7.1691                      | 6                | -5                  | CoLenPar     |
| -0.000368866     | -14.2518                    | 1                | 2                   | SynSemHeads  |
| -0.000230322     | 11.3504                     | -9               | -4                  | CoPar        |
| -0.000100725     | -14.7814                    | -2               | 0                   | SubjVerbAgr  |

# Informal error analysis

- Manual examination of first 100 sentences of development data
- Preliminary classification of "type" of parser error
- Multiple errors per sentence were found

| Error type           | Reranker | Coarse parser |
|----------------------|----------|---------------|
| PP attach            | 19       | 3             |
| Coordination         | 8        | 2             |
| Category misanalysis | 7        | 1             |
| Other attachment     | 4        | 9             |
| Compounding          | 2        | 3             |
| Other errors         | 2        | 4             |

14 PTB errors, 7 PTB ambiguities

(Suggested by Yusuke Miyao)

# Sample PP attachment error (1/2)

In composite trading on the New York Stock Exchange, GTE rose \$1.25 to \$64.125.



Parse tree

# Sample PP attachment error (2/2)

In composite trading on the New York Stock Exchange, GTE rose \$1.25 to \$64.125.



Gold (treebank) tree

# Coordination error (1/2)

Earlier rate reductions in Texas and California reduced the quarter's revenue and operating profit \$55 million; a year earlier, operating profit in telephone operations was reduced by a similar amount as a result of a provision for a reorganization.



Parse tree

# Coordination error (2/2)

Earlier rate reductions in Texas and California reduced the quarter's revenue and operating profit \$55 million; a year earlier, operating profit in telephone operations was reduced by a similar amount as a result of a provision for a reorganization.



### Category misanalysis error (1/2)

Electrical products' sales fell to \$496.7 million from \$504.5 million with higher world-wide lighting volume offset by lower domestic prices and the impact of weaker currencies in Europe and South America.



Parse tree

# Category misanalysis (2/2)

Electrical products' sales fell to \$496.7 million from \$504.5 million with higher world-wide lighting volume offset by lower domestic prices and the impact of weaker currencies in Europe and South America.



#### Gold (treebank) tree

### Multiple attachment errors (1/3)

The company wants its business mix to more closely match that of AT & T - a step it says will help prevent cross subsidization.



Parse tree

### Multiple attachment errors (2/3)

The company wants its business mix to more closely match that of AT & T - a step it says will help prevent cross subsidization.



#### Multiple attachment errors (3/3)

The company wants its business mix to more closely match that of AT & T - a step it says will help prevent cross subsidization.



# **Technical summary**

- Generative and discriminative parsers both identify the likely parse y of a string x, e.g., by estimating P(y|x)
- Generative parsers also define language models, estimate P(x)
- Discriminative estimation doesn't require feature independence
  - suitable for models without tree-structured feature dependencies
- *Parsing is equally complex* for generative and discriminative parsers
  - depends on features used
  - *coarse-to-fine* approaches use one parser to narrow the search space for another
- Estimation is computationally inexpensive for generative parsers, but expensive for discriminative parsers
- Because a discriminative parser can use the generative model's probability estimate as a feature, *discriminative parsers almost never do worse* than the generative model, and often do substantially better.

# Conclusions

- Discriminatively trained parsing models can perform better than standard generative parsing models
- Features can be arbitrary functions of parse trees
  - Non-local features can make a big difference!
  - Difficult to tell which features are most useful
  - Better evaluation (maybe requires real parsing applications?)
- Coarse-to-fine results in (moderately) efficient algorithms
- The parser's errors are often recognizable as certain types of mistakes
  - PP attachment is still a serious issue!

# **Future directions**

- More features (fix those PP attachments!)
- Additional languages (Chinese)
- Richer linguistic representations (WH-dependencies)
- More efficient computational procedures for search and estimation
  - Dynamic programming, approximation methods (variational methods, best-first or beam search)
- Apply discriminative techniques to applications such as speech recognition and machine translation

# Discriminative learning in other settings

- Speech recognition
  - Take x to be the acoustic signal,  $\mathcal{Y}(x)$  all strings in recognizer lattice for x
  - Training data:  $D = ((y_1, x_1), \dots, (y_n, x_n))$ , where  $y_i$  is correct transcript for  $x_i$
  - Features could be *n*-grams, log parser prob, cache features
- Machine translation
  - Take x to be input language string,  $\mathcal{Y}(x)$  a set of target language strings (e.g., generated by an IBM-style model)
  - Training data:  $D = ((y_1, x_1), \dots, (y_n, x_n))$ , where  $y_i$  is correct translation of  $x_i$
  - Features could be *n*-grams of target language strings, word and phrase correspondences, ...

### **Regularizer tuning in Max Ent models**

- Associate each feature  $f_j$  with bin b(j)
- Associate regularizer constant  $\beta_k$  with feature bin k
- Optimize feature weights  $\alpha = (\alpha_1, \dots, \alpha_m)$  on main training data M
- Optimize regularizer constants  $\beta$  on held-out data H

$$L_D(\alpha) = \prod_{i=1}^n P_\alpha(y_i|x_i), \text{ where } D = ((y_1, x_1), \dots, (y_n, x_n))$$

$$\hat{\alpha}(\beta) = \operatorname*{argmax}_{\alpha} \log L_M(\alpha) - \sum_{j=1}^m \beta_{b(j)} \alpha_j^2$$

$$\hat{\beta} = \operatorname*{argmax}_{\beta} \log L_H(\hat{\alpha}(\beta))$$

# **Expectation maximization for PCFGs**

- Hidden training data:  $D = (x_1, \ldots, x_n)$ , where  $x_i$  is a string
- The Inside-Outside algorithm is an Expectation-Maximization algorithm for PCFGs

$$\hat{p} = \operatorname{argmax}_{p} L_{D}(p), \text{ where}$$

$$L_{D}(p) = \prod_{i=1}^{n} P_{p}(x_{i}) = \operatorname{argmax}_{p} \prod_{i=1}^{n} \sum_{y \in \mathcal{Y}(x_{i})} P(y)$$

$$\bigvee_{\mathcal{Y}} \bigoplus_{q \in \mathcal{Y}(x_{i})} \mathcal{Y}(x_{i})$$

#### Why there is no conditional ML EM

- Conditional ML conditions on the string x
- Hidden training data:  $D = (x_1, \ldots, x_n)$ , where  $x_i$  is a string
- The likelihood is the probability of predicting the string  $x_i$  given the string  $x_i$ , a *constant function*

$$\hat{p} = \operatorname{argmax}_{p} L_{D}(p), \text{ where}$$

$$L_{D}(p) = \prod_{i=1}^{n} P_{p}(x_{i}|x_{i})$$

$$\mathcal{Y}(x_{i})$$

$$\mathcal{Y}(x_{i})$$

$$48$$