
Probabilistic Context-Free Grammars
and beyond

Mark Johnson

Microsoft Research / Brown University

July 2007

1 / 87

Outline
Introduction
Formal languages and Grammars

Probabilistic context-free grammars

Hidden Markov Models as PCFGs
Computation with PCFGs

Estimating PCFGs from visible or hidden data

Bayesian inference for PCFGs

Gibbs sampler for (t, θ)

Metropolis-Hastings collapsed sampler for t

Application: Unsupervised morphological analysis of Sesotho verbs

Conclusion

2 / 87

What is computational linguistics?

Computational linguistics studies the computational processes
involved in language

• Scientific questions:
I How is language comprehended and produced?
I How is language acquired (learned)?

These are characterized in terms of information processing
• Technological applications:

I Machine translation
I Information extraction and question answering
I Automatic summarization
I Automatic speech recognition (?)

3 / 87

Why grammars?
Grammars specify a wide range of sets of structured objects

• especially useful for describing human languages
• applications in vision, computational biology, etc

There is a hierarchy of kinds of grammars

• if a language can be specified by a grammar low in the
hierarchy, then it can be specified by a grammar higher in
the hierarchy

• the location of a grammar in this hierarchy determines its
computational properties

There are generic algorithms for computing with and estimating
(learning) each kind of grammar

• no need to devise new models and corresponding
algorithms for each new set of structures

4 / 87

Outline
Introduction
Formal languages and Grammars

Probabilistic context-free grammars

Hidden Markov Models as PCFGs
Computation with PCFGs

Estimating PCFGs from visible or hidden data

Bayesian inference for PCFGs

Gibbs sampler for (t, θ)

Metropolis-Hastings collapsed sampler for t

Application: Unsupervised morphological analysis of Sesotho verbs

Conclusion

5 / 87

Preview of (P)CFG material

• Why are context-free grammars called “context-free”?
• Context-free grammars (CFG) derivations and parse trees
• Probabilistic CFGs (PCFGs) define probability

distributions over derivations/trees
• The number of derivations often grows exponentially with

sentence length
• Even so, we can compute the sum/max of probabilities of

all trees in cubic time
• It’s easy to estimate PCFGs from a treebank (a sequence of

trees)
• The EM algorithm can estimate PCFGs from a corpus of

strings

6 / 87

Formal languages

T is a finite set of terminal symbols, the vocabulary of the
language

• E.g., T = {likes, Sam, Sasha, thinks}

A string is a finite sequence of elements of T

• E.g., Sam thinks Sam likes Sasha

T? is the set of all strings (including the empty string ε)
T+ is the set of all non-empty strings
A (formal) language is a set of strings (a subset of T?)

• E.g., L = {Sam, Sam thinks, Sasha thinks, . . .}

A probabilistic language is a probability distribution over a
language

7 / 87

Rewrite grammars
A rewrite grammar G = (T, N, S, R) consists of

T, a finite set of terminal symbols
N, a finite set of nonterminal symbols disjoint from T
S ∈ N is the start symbol, and
R is a finite subset of N+ × (N ∪ T)?

The members of R are called rules or productions, and usually
written α → β, where α ∈ N+ and β ∈ (N ∪ T)?

A rewrite grammar defines the rewrites relation ⇒, where
γαδ ⇒ γβδ iff α → β ∈ R and γ, δ ∈ (N ∪ T)?.
A derivation of a string w ∈ T? is a finite sequence of rewritings
S ⇒ . . . ⇒ w.
⇒? is the reflexive transitive closure of ⇒
The language generated by G is {w : S ⇒? w, w ∈ T?}

8 / 87

Example of a rewriting grammar

G1 = (T1, N1, S, R1), where

T1 = {Al, George, snores},
N1 = {S, NP, VP},
R1 = {S → NP VP, NP → Al, NP → George, VP → snores}.

Sample derivations:

S ⇒ NP VP ⇒ Al VP ⇒ Al snores

S ⇒ NP VP ⇒ George VP ⇒ George snores

9 / 87

The Chomsky Hierarchy
Grammars classified by the shape of their productions α → β.

Context-sensitive: |α| ≤ |β|

Context-free: |α| = 1
Right-linear: |α| = 1 and β ∈ T?(N ∪ ε).

The classes of languages generated by these classes of
grammars form a strict hierarchy (ignoring ε).

Language class Recognition complexity
Unrestricted undecidable

Context-sensitive exponential time
Context-free polynomial time

Linear linear time

Right linear grammars define finite state languages, and
probabilistic right linear grammars define the same
distributions as finite state Hidden Markov Models.

10 / 87

Context-sensitivity in human languages

Some human languages are not context-free (Shieber 1984,
Culy 1984).
Context-sensitive grammars don’t seem useful for describing
human languages.
Trees are intuitive descriptions of linguistic structure and are
normal forms for context-free grammar derivations.
There is an infinite hierarchy of language families (and
grammars) between context-free and context-sensitive.
Mildly context-sensitive grammars, such as Tree Adjoining
Grammars (Joshi) and Combinatory Categorial Grammar
(Steedman) seem useful for natural languages.

11 / 87

Parse trees for context-free grammars
A parse tree generated by CFG G = (T, N, S, R) is a finite
ordered tree labeled with labels from N ∪ T, where:

• the root node is labeled S
• for each node n labeled with a nonterminal A ∈ N there is

a rule A → β ∈ R and n’s children are labeled β

• each node labeled with a terminal has no children
ΨG is the set of all parse trees generated by G.
ΨG(w) is the subset of ΨG with yield w ∈ T?.

R1 = {S → NP VP, NP → Al, NP → George, VP → snores}

S

NP

Al

VP

snores

S

NP

George

VP

snores

12 / 87

Example of a CF derivation and parse tree

R2 =

{
S → NP VP NP → D N VP → V

D → the N → dog V → barks

}

S

S

13 / 87

Example of a CF derivation and parse tree

R2 =

{
S → NP VP NP → D N VP → V

D → the N → dog V → barks

}

S
(

((h
hh

NP VP

S

⇒ NP VP

14 / 87

Example of a CF derivation and parse tree

R2 =

{
S → NP VP NP → D N VP → V

D → the N → dog V → barks

}

S
(

((h
hh

NP VP
�

�X
X

D N

S

⇒ NP VP

⇒ D N VP

15 / 87

Example of a CF derivation and parse tree

R2 =

{
S → NP VP NP → D N VP → V

D → the N → dog V → barks

}

S
(

((h
hh

NP VP
�

�X
X

D N

the

S

⇒ NP VP

⇒ D N VP

⇒ the N VP

16 / 87

Example of a CF derivation and parse tree

R2 =

{
S → NP VP NP → D N VP → V

D → the N → dog V → barks

}

S
(

((h
hh

NP VP
�

�X
X

D N

the dog

S

⇒ NP VP

⇒ D N VP

⇒ the N VP

⇒ the dog VP

17 / 87

Example of a CF derivation and parse tree

R2 =

{
S → NP VP NP → D N VP → V

D → the N → dog V → barks

}

S
(

((h
hh

NP VP
�

�X
X

D N

the dog

V

S

⇒ NP VP

⇒ D N VP

⇒ the N VP

⇒ the dog VP

⇒ the dog V

18 / 87

Example of a CF derivation and parse tree

R2 =

{
S → NP VP NP → D N VP → V

D → the N → dog V → barks

}

S
(

((h
hh

NP VP
�

�X
X

D N

the dog

V

barks

S

⇒ NP VP

⇒ D N VP

⇒ the N VP

⇒ the dog VP

⇒ the dog V

⇒ the dog barks

19 / 87

Example of a CF derivation and parse tree

R2 =

{
S → NP VP NP → D N VP → V

D → the N → dog V → barks

}

S
(

((h
hh

NP VP
�

�X
X

D N

the dog

V

barks

S

⇒ NP VP

⇒ D N VP

⇒ the N VP

⇒ the dog VP

⇒ the dog V

⇒ the dog barks

20 / 87

Trees can depict constituency

VP

NP

N

the man

PP

NP

N

the

VP

DD

telescopewithsawI

Pro V

NP

S

P Preterminals

Nonterminals

Terminals or terminal yield

21 / 87

CFGs can describe structural ambiguity

S

NP

Pro

I

VP

VP

V

saw

NP

D

the

N

man

PP

P

with

NP

D

the

N

telescope

S

NP

Pro

I

VP

V

saw

NP

D

the

N

N

man

PP

P

with

NP

D

the

N

telescope

R2 = {VP → V NP, VP → VP PP, NP → D N, N → N PP, . . .}

22 / 87

Ambiguities usually grow exponentially with length

R = {S → S S, S → x}

S

x

S

S

x

S

x

S

S

x

S

S

x

S

x

S

S

S

x

S

x

S

x

Length of string

N
um

be
ro

fp
ar

se
s

12108642

100000

10000

1000

100

10

1

S

S

x

S

S

x

S

S

x

S

x

S

S

x

S

S

S

x

S

x

S

x

S

S

S

x

S

x

S

S

x

S

x

S

S

S

x

S

S

x

S

x

S

x

S

S

S

S

x

S

x

S

x

S

x

23 / 87

CFG account of subcategorization

Nouns and verbs differ in the number of complements they
appear with.
We can use a CFG to describe this by splitting or subcategorizing
the basic categories.

R4 = {VP → V
[] , VP → V

[NP] NP, V
[] → sleeps, V

[NP] → likes, . . .}

S

NP VP

Al V
[]

sleeps

likes

S

NP VP

Al V NP

N

pizzas

[NP]

24 / 87

Nonlocal “movement” constructions
“Movement” constructions involve a phrase appearing far
from its normal location.
Linguists believed CFGs could not generate them, and posited
“movement transformations” to produce them (Chomsky 1957)
But CFGs can generate them via “feature passing” using a
conspiracy of rules (Gazdar 1984)

S

NP VP

Aux VP

V NP

Al

eat

will

pizza

D N

the

C’/NP

Aux S/NP

NP VP/NP

Aux VP/NP

V NP/NP

will

Al

eat

NP

pizza

D N

which

CP

25 / 87

Outline
Introduction
Formal languages and Grammars

Probabilistic context-free grammars

Hidden Markov Models as PCFGs
Computation with PCFGs

Estimating PCFGs from visible or hidden data

Bayesian inference for PCFGs

Gibbs sampler for (t, θ)

Metropolis-Hastings collapsed sampler for t

Application: Unsupervised morphological analysis of Sesotho verbs

Conclusion

26 / 87

Probabilistic grammars

A probabilistic grammar G defines a probability distribution
PG(ψ) over the parse trees Ψ generated by G, and hence over
strings generated by G.

PG(w) = ∑
ψ∈ΨG(w)

PG(ψ)

Standard (non-stochastic) grammars distinguish grammatical
from ungrammatical strings (only the grammatical strings
receive parses).
Probabilistic grammars can assign non-zero probability to
every string, and rely on the probability distribution to
distinguish likely from unlikely strings.

27 / 87

Probabilistic context-free grammars

A Probabilistic Context Free Grammar (PCFG) consists of
(T, N, S, R, p) where:

• (T, N, S, R) is a CFG with no useless productions or
nonterminals, and

• p is a vector of production probabilities, i.e., a function
R → [0, 1] that satisfies for each A ∈ N:

∑
A→β∈R(A)

p(A → β) = 1

where R(A) = {A → α : A → α ∈ R}.

A production A → α is useless iff there are no derivations of the
form S ⇒? γAδ ⇒ γαδ ⇒∗ w for any γ, δ ∈ (N ∪ T)? and
w ∈ T?.

28 / 87

Probability distribution defined by a PCFG
Intuitive interpretation:

• the probability of rewriting nonterminal A to α is
p(A → α)

• the probability of a derivation is the product of
probabilities of rules used in the derivation

For each production A → α ∈ R, let fA→α(ψ) be the number of
times A → α is used in ψ.
A PCFG G defines a probability distribution PG on Ψ that is
non-zero on Ψ(G):

PG(ψ) = ∏
r∈R

p(r) fr(ψ)

This distribution is properly normalized if p satisfies suitable
constraints.

29 / 87

Example PCFG

1.0 S → NP VP 1.0 VP → V

0.75 NP → George 0.25 NP → Al

0.6 VP → barks 0.4 VP → snores

P










S

NP VP

George V

barks










= 0.45 P










S

NP VP

Al V

snores










= 0.1

30 / 87

PCFGs as recursive mixtures

The distributions over strings induced by a PCFG in
Chomsky-normal form (i.e., all productions are of the form
A → B C or A → x, where A, B, C ∈ N and x ∈ T) is GS where:

GA = ∑
A→B C∈RA

pA → B CGB • GC + ∑
A→w∈RA

pA → xδx

(P • Q)(z) = ∑
xy=z

P(x)Q(y)

δx(w) = 1 if w = x and 0 otherwise

In fact, GA(w) = P(A ⇒? w|θ), the sum of the probability of all
trees with root node A and yield w

31 / 87

Outline
Introduction
Formal languages and Grammars

Probabilistic context-free grammars

Hidden Markov Models as PCFGs
Computation with PCFGs

Estimating PCFGs from visible or hidden data

Bayesian inference for PCFGs

Gibbs sampler for (t, θ)

Metropolis-Hastings collapsed sampler for t

Application: Unsupervised morphological analysis of Sesotho verbs

Conclusion

32 / 87

Hidden Markov Models and Finite State Automata

• Finite State Automata (FSA) are probably the simplest
devices that generate an infinite number of strings

• They are conceptually and computationally simpler than
CFGs, but can only express a subset of CF languages

• They are expressive enough for many useful tasks:
I Speech recognition
I Phonology and morphology
I Lexical processing

• Very large FSA can be built and used very efficiently
• If the states are not visible, then Finite State Automata

define Hidden Markov Models

33 / 87

Informal description of Finite State Automata

FSA generate arbitrarily long strings one symbol at a time.
At each step the FSA is in one of a finite number of states.
A FSA generates strings as follows:

1. Initialize the machine’s state s to the start state
2. Loop: Based on the current state s, either

2.1 stop, or
2.2 emit a terminal x move to state s′

The language the FSA generates is the set of all sequences of
terminals it can emit.
In a probabilistic FSA, these actions are directed by probability
distributions.
If the states are not visible, this is a Hidden Markov Model

34 / 87

(Mealy) finite-state automata

A (Mealy) automaton M = (T, N, S, F, M) consists of:

• T, a set of terminals, (T = {a, b})

10

a

b

a

• N, a finite set of states, (N = {0, 1})
• S ∈ N, the start state, (S = 0)
• F ⊆ N, the set of final states (F = {1}) and
• M ⊆ N × T × N, the state transition relation.

(M = {(0, a, 0), (0, a, 1), (1, b, 0)})
A accepting derivation of a string w1 . . . wn ∈ T? is a sequence of
states s0 . . . sn ∈ NS? where:

• s0 = S is the start state
• sn ∈ F, and
• for each i = 1 . . . n, (si−1, vi, si) ∈ M.

00101 is an accepting derivation of aaba.

35 / 87

Probabilistic Mealy automata
A probabilistic Mealy automaton M = (T, N, S, p f , pm) consists of:

• terminals T, states N and start state S ∈ N as before,
• p f (s), the probability of halting at state s ∈ N, and
• pm(v, s′|s), the probability of moving from s ∈ N to s′ ∈ N

and emitting a v ∈ T.
where p f (s) + ∑v∈T,s′∈N pm(v, s′|s) = 1 for all s ∈ S (halt or
move on)
The probability of a derivation with states s0 . . . sn and outputs
v1 . . . vn is:

PM(s0 . . . sn; v1 . . . vn) =

(
n

∏
i=1

pm(vi, si|si−1)

)

p f (sn)

Example: p f (0) = 0, p f (1) = 0.1,
pm(a, 0|0) = 0.2, pm(a, 1|0) = 0.8, pm(b, 0|1) = 0.9
PM(00101, aaba) = 0.2 × 0.8 × 0.9 × 0.8 × 0.1

10

a

b

a

36 / 87

Probabilistic FSA as PCFGs
Given a Mealy PFSA M = (T, N, S, p f , pm), let GM have the
same terminals, states and start state as M, and have
productions

• s → ε with probability p f (s) for all s ∈ N
• s → v s′ with probability pm(v, s′|s) for all s, s′ ∈ N and

v ∈ T

p(0 → a 0) = 0.2, p(0 → a 1) = 0.8,
p(1 →ε) = 0.1, p(1 → b 0) = 0.9

10

a

b

a

Mealy FSA

0

a 1

b 0

a 1

a

0

PCFG parse of aaba

37 / 87

PCFGs can express “multilayer HMMs”

Many applications involve hierarchies of FSA.
PCFGs provide a systematic way of describing such systems.
Sesotho is an agglutinative language in which each word
contains several morphemes. Each part of speech (noun, verb)
is generated by an FSA. Another FSA generates the possible
sequences of parts of speech.

jo

tla VSTEM

phela

TENSE

SUBJ

o

NOUN

VERB

NPREFIX

di NSTEM

38 / 87

Outline
Introduction
Formal languages and Grammars

Probabilistic context-free grammars

Hidden Markov Models as PCFGs
Computation with PCFGs

Estimating PCFGs from visible or hidden data

Bayesian inference for PCFGs

Gibbs sampler for (t, θ)

Metropolis-Hastings collapsed sampler for t

Application: Unsupervised morphological analysis of Sesotho verbs

Conclusion

39 / 87

Things we want to compute with PCFGs
Given a PCFG G and a string w ∈ T?,

• (parsing): the most likely tree for w,

argmaxψ∈ΨG(w)PG(ψ)

• (language modeling): the probability of w,

PG(w) = ∑
ψ∈ΨG(w)

PG(ψ)

Learning rule probabilities from data:

• (maximum likelihood estimation from visible data): given
a corpus of trees d = (ψ1, . . . , ψn), which rule probabilities
p makes d as likely as possible?

• (maximum likelihood estimation from hidden data): given
a corpus of strings w = (w1, . . . , wn), which rule
probabilities p makes w as likely as possible?

40 / 87

Parsing and language modeling

The probability PG(ψ) of a tree ψ ∈ ΨG(w) is:

PG(ψ) = ∏
r∈R

p(r) fr(ψ)

Suppose the set of parse trees ΨG(w) is finite, and we can
enumerate it.
Naive parsing/language modeling algorithms for PCFG G and
string w ∈ T?:

1. Enumerate the set of parse trees ΨG(w)

2. Compute the probability of each ψ ∈ ΨG(w)

3. Argmax/sum as appropriate

41 / 87

Chomsky normal form

A CFG is in Chomsky Normal Form (CNF) iff all productions are
of the form A → B C or A → x, where A, B, C ∈ N and x ∈ T.
PCFGs without epsilon productions A → ε can always be put into
CNF.
Key step: binarize productions with more than two children by
introducing new nonterminals

B3

A

B1 B2 Bn
⇒

B1B2B3

B1 B2

B1B2 B3

A

B4

42 / 87

Substrings and string positions

Let w = w1w2 . . . wn be a string of length n
A string position for w is an integer i ∈ 0, . . . , n (informally, it
identifies the position between words wi−1 and wi)

• the • dog • chases • cats •
0 1 2 3 4

A substring of w can be specified by beginning and ending
string positions
wi,j is the substring starting at word i + 1 and ending at word j.

w0,4 = the dog chases cats

w1,2 = dog

w2,4 = chases cats

43 / 87

Language modeling using dynamic programming

• Goal: To compute PG(w) = ∑
ψ∈ΨG(w)

PG(ψ) = PG(S ⇒∗ w)

• Data structure: A table called a chart recording
PG(A ⇒∗ wi,k) for all A ∈ N and 0 ≤ i < k ≤ |w|

• Base case: For all i = 1, . . . , n and A → wi, compute:

PG(A ⇒∗ wi−1,i) = p(A → wi)

• Recursion: For all k − i = 2, . . . , n and A ∈ N, compute:

PG(A ⇒∗ wi,k)

=
k−1
∑

j=i+1
∑

A→B C∈R(A)

p(A → B C)PG(B ⇒∗ wi,j)PG(C ⇒∗ wj,k)

44 / 87

Dynamic programming recursion

PG(A ⇒∗ wi,k)

=
k−1
∑

j=i+1
∑

A→B C∈R(A)

p(A → B C)PG(B ⇒∗ wi,j)PG(C ⇒∗ wj,k)

B C

A

wi,j wj,k

S

PG(A ⇒∗ wi,k) is called the inside probability of A spanning w i,k.

45 / 87

Example PCFG string probability calculation

w = George hates John

R =







1.0 S → NP VP 1.0 VP → V NP

0.7 NP → George 0.3 NP → John

0.5 V → likes 0.5 V → hates







George hates John

NP 0.7 V 0.5 NP 0.3

S 0.105

1 2 30

VP 0.15

Right string position

0 NP 0.7

2

1

S 0.105

VP 0.15

1 2 3

V 0.5

NP 0.3Le
ft

st
rin

g
po

sit
io

n

46 / 87

Computational complexity of PCFG parsing

PG(A ⇒∗ wi,k)

=
k−1
∑

j=i+1
∑

A→B C∈R(A)

p(A → B C)PG(B ⇒∗ wi,j)PG(C ⇒∗ wj,k)

B C

A

wi,j wj,k

S

For each production r ∈ R and each i, k, we must sum over all
intermediate positions j ⇒ O(n3|R|) time

47 / 87

Outline
Introduction
Formal languages and Grammars

Probabilistic context-free grammars

Hidden Markov Models as PCFGs
Computation with PCFGs

Estimating PCFGs from visible or hidden data

Bayesian inference for PCFGs

Gibbs sampler for (t, θ)

Metropolis-Hastings collapsed sampler for t

Application: Unsupervised morphological analysis of Sesotho verbs

Conclusion

48 / 87

Estimating (learning) PCFGs from data
Estimating productions and production probabilities from
visible data (corpus of parse trees) is straight-forward:

• the productions are identified by the local trees in the data
• Maximum likelihood principle: select production

probabilities in order to make corpus as likely as possible
• Bayesian estimators often produce more useful estimates

Estimating production probabilities from hidden data (corpus of
terminal strings) is much more difficult:

• The Expectation-Maximization (EM) algorithm finds
probabilities that locally maximize likelihood of corpus

• The Inside-Outside algorithm runs in time polynomial in
length of corpus

• Bayesian estimators have recently been developed
Estimating the productions from hidden data is an open
problem.

49 / 87

Estimating PCFGs from visible data

Data: A treebank of parse trees Ψ = ψ1, . . . , ψn.

L(p) =
n

∏
i=1

PG(ψi) = ∏
A→α∈R

p(A → α) fA→α(Ψ)

Introduce |N| Lagrange multipliers cB, B ∈ N for the
constraints ∑B→β∈R(B) p(B → β) = 1:

∂



L(p) − ∑
B∈N

cB



 ∑
B→β∈R(B)

p(B → β) − 1









∂p(A → α)
=

L(p) fr(Ψ)

p(A → α)
− cA

Setting this to 0, p(A → α) =
fA→α(Ψ)

∑A→α′∈R(A) fA→α′(Ψ)

50 / 87

Visible PCFG estimation example

Ψ =

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

corn grows

Rule Count Rel Freq
S → NP VP 3 1
NP → rice 2 2/3
NP → corn 1 1/3
VP → grows 3 1

P








S

NP VP

rice grows








= 2/3

P








S

NP VP

corn grows








= 1/3

51 / 87

Estimating production probabilities from hidden data

Data: A corpus of sentences w = w1, . . . , wn.

L(w) =
n

∏
i=1

PG(wi). PG(w) = ∑
ψ∈ΨG(w)

PG(ψ).

∂L(w)

∂p(A → α)
=

L(w) ∑
n
i=1 EG(fA→α|wi)

p(A → α)

Setting this equal to the Lagrange multiplier cA and imposing
the constraint ∑B→β∈R(B) p(B → β) = 1:

p(A → α) =
∑

n
i=1 EG(fA→α|wi)

∑A→α′∈R(A) ∑
n
i=1 EG(fA→α′ |wi)

This is an iteration of the expectation maximization algorithm!

52 / 87

The EM algorithm for PCFGs
Input: a corpus of strings w = w1, . . . , wn

Guess initial production probabilities p(0)

For t = 1, 2, . . . do:

1. Calculate expected frequency ∑
n
i=1 Ep(t−1)(fA→α|wi) of each

production:

Ep(fA→α|w) = ∑
ψ∈ΨG(w)

fA→α(ψ)Pp(ψ)

2. Set p(t) to the relative expected frequency of each production

p(t)(A → α) =
∑

n
i=1 Ep(t−1)(fA→α|wi)

∑A→α′ ∑
n
i=1 Ep(t−1)(fA→α′ |wi)

It is as if p(t) were estimated from a visible corpus ΨG in which
each tree ψ occurs ∑

n
i=1 Pp(t−1)(ψ|wi) times.

53 / 87

Dynamic programming for Ep(fA→B C|w)

Ep(fA→B C|w) =

∑
0≤i<j<k≤n

P(S ⇒∗ w1,i A wk,n)p(A → B C)P(B ⇒∗ wi,j)P(C ⇒∗ wj,k)

PG(w)

B C

A

wi,j wj,k

S

w0,i wk,n

54 / 87

Calculating “outside probabilities”

Construct a table of “outside probabilities”
PG(S ⇒∗ w0,i A wk,n) for all 0 ≤ i < k ≤ n and A ∈ N
Recursion from larger to smaller substrings in w.
Base case: P(S ⇒∗ w0,0 S wn,n) = 1
Recursion: P(S ⇒∗ w0,j C wk,n) =

j−1

∑
i=0

∑
A,B∈N

A→B C∈R

P(S ⇒∗ w0,i A wk,n)p(A → B C)P(B ⇒∗ wi,j)

+
n
∑

l=k+1
∑
A,D∈N

A→C D∈R

P(S ⇒∗ w0,j A wl,n)p(A → C D)P(D ⇒∗ wk,l)

55 / 87

Recursion in PG(S ⇒∗ w0,i A wk,n)

P(S ⇒∗ w0,j C wk,n) =
j−1

∑
i=0

∑
A,B∈N

A→B C∈R

P(S ⇒∗ w0,i A wk,n)p(A → B C)P(B ⇒∗ wi,j)

+
n
∑

l=k+1
∑
A,D∈N

A→C D∈R

P(S ⇒∗ w0,j A wl,n)p(A → C D)P(D ⇒∗ wk,l)

B C

A

wi,j wj,k

S

w0,i wk,n

C D

A

wj,k wk,l

S

w0,j wl,n

56 / 87

Example: The EM algorithm with a toy PCFG

Initial rule probs
rule prob
· · · · · ·
VP → V 0.2
VP → V NP 0.2
VP → NP V 0.2
VP → V NP NP 0.2
VP → NP NP V 0.2
· · · · · ·
Det → the 0.1
N → the 0.1
V → the 0.1

“English” input
the dog bites
the dog bites a man
a man gives the dog a bone
· · ·

“pseudo-Japanese” input
the dog bites
the dog a man bites
a man the dog a bone gives
· · ·

57 / 87

Probability of “English”

Iteration

Average
sentence

probability

543210

1

0.1

0.01

0.001

0.0001

1e-05

1e-06

58 / 87

Rule probabilities from “English”

V →the
N →the

Det →the
VP →NP NP V
VP →V NP NP

VP →NP V
VP →V NP

Iteration

Rule
probability

543210

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

59 / 87

Probability of “Japanese”

Iteration

Average
sentence

probability

543210

1

0.1

0.01

0.001

0.0001

1e-05

1e-06

60 / 87

Rule probabilities from “Japanese”

V →the
N →the

Det →the
VP →NP NP V
VP →V NP NP

VP →NP V
VP →V NP

Iteration

Rule
probability

543210

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

61 / 87

Learning in statistical paradigm

• The likelihood is a differentiable function of rule
probabilities
⇒ learning can involve small, incremental updates

• Learning structure (rules) is hard, but . . .
• Parameter estimation can approximate rule learning

I start with “superset” grammar
I estimate rule probabilities
I discard low probability rules

• Non-parametric Bayesian estimators combine parameter
and rule estimation

62 / 87

Applying EM to real data
• ATIS treebank consists of 1,300 hand-constructed parse

trees
• ignore the words (in this experiment)
• about 1,000 PCFG rules are needed to build these trees

S

VP

VB

Show

NP

PRP

me

NP

NP

PDT

all

DT

the

JJ

nonstop

NNS

flights

PP

PP

IN

from

NP

NNP

Dallas

PP

TO

to

NP

NNP

Denver

ADJP

JJ

early

PP

IN

in

NP

DT

the

NN

morning

.

.

63 / 87

Experiments with EM on ATIS

1. Extract productions from trees and estimate probabilities
probabilities from trees to produce PCFG.

2. Initialize EM with the treebank grammar and MLE
probabilities

3. Apply EM (to strings alone) to re-estimate production
probabilities.

4. At each iteration:
I Measure the likelihood of the training data and the quality

of the parses produced by each grammar.
I Test on training data (so poor performance is not due to

overlearning).

64 / 87

Likelihood of training strings

Iteration

log P

20151050

-14000
-14200
-14400
-14600
-14800
-15000
-15200
-15400
-15600
-15800
-16000

65 / 87

Quality of ML parses

Recall
Precision

Iteration

Parse
Accuracy

20151050

1

0.95

0.9

0.85

0.8

0.75

0.7

66 / 87

Why does EM do so poorly?

• EM assigns trees to strings to maximize the marginal
probability of the strings, but the trees weren’t designed
with that in mind

• We have an “intended interpretation” of categories like
NP, VP, etc., which EM has no way of knowing

• Our grammars are defective
I real language has dependencies that these PCFGs can’t

capture
• How can information about the marginal distribution of

strings P(w) provide information about the conditional
distribution of parses given strings P(ψ|w)?

I need additional linking assumptions about the relationship
between parses and strings

• . . . but no one really knows.

67 / 87

Outline
Introduction
Formal languages and Grammars

Probabilistic context-free grammars

Hidden Markov Models as PCFGs
Computation with PCFGs

Estimating PCFGs from visible or hidden data

Bayesian inference for PCFGs

Gibbs sampler for (t, θ)

Metropolis-Hastings collapsed sampler for t

Application: Unsupervised morphological analysis of Sesotho verbs

Conclusion

68 / 87

Unsupervised inference for PCFGs
• Given a CFG G and corpus of strings w, infer:

I rule probabilities θ
I trees t for w

• Maximum likelihood, e.g. Inside-Outside/EM (a point
estimate)

θ̂ = argmaxθP(w|θ) (EM)
t̂ = argmaxtP(t|w, θ̂) (Viterbi)

• Bayesian inference incorporates prior P(θ) and infers a
posterior distribution

P(θ|w)
︸ ︷︷ ︸

Posterior

∝ P(w|θ)
︸ ︷︷ ︸

Likelihood

P(θ)
︸︷︷︸

Prior

P(t|w) ∝

∫

∆
P(w, t|θ) P(θ) dθ

69 / 87

Bayesian priors

P(Hypothesis|Data)
︸ ︷︷ ︸

Posterior

∝ P(Data|Hypothesis)
︸ ︷︷ ︸

Likelihood

P(Hypothesis)
︸ ︷︷ ︸

Prior

• Hypothesis = rule probabilities θ, Data = strings w
• Prior can incorporate linguistic insights (“universal

grammar”)
• Math/computation vastly simplified if prior is conjugate to

likelihood
I posterior belongs to the same model family as prior

• PCFGs are products of multinomials, one for each
nonterminal A

I model has a parameter θA→β for each rule A → β ∈ R
⇒ Conjugate prior is product of Dirichlets, one for each

nonterminal A
I prior has a hyper-parameter αA→β for each rule A → β ∈ R

70 / 87

Dirichlet priors for multinomials

α = (0.1, 1.0)
α = (0.5, 1.0)
α = (1.0, 1.0)

Binomial parameter θ1

P(θ1|α)

10.80.60.40.20

5

4

3

2

1

0

• Outcomes 1, . . . , m
• Multinomial

P(X = i) = θi
θ = (θ1, . . . , θm)

• Dirichlet prior
parameters
α = (α1, . . . , αm)

PD(θ|α) =
1

Z(α)

m
∏
i=1

θαi−1
i

Z(α) =
∏

m
i=1 Γ(αi)

Γ(∑
m
i=1 αi)

• As α1 approaches 0, P(θ1|α) concentrates around 0
• PCFG prior is product of Dirichlets (one for each A ∈ N)
• Dirichlet for A in PCFG prior has hyper-parameter vector

αA
• Dirichlet prior can prefer sparse grammars in which θr = 0

71 / 87

Dirichlet priors for PCFGs
• Let RA be the rules expanding A in R, and θA, αA be the

subvectors of θ, α corresponding to RA
• Conjugacy makes the posterior simple to compute given

trees t:
PD(θ|α) = ∏

A∈N
PD(θA|αA) ∝ ∏

r∈R
θαr

P(θ|t, α) ∝ P(t|θ)PD(θ|α)

∝

(

∏
r∈R

θ
fr(t)
r

) (

∏
r∈R

θαr−1
r

)

= ∏
r∈R

θ
fr(t)+αr−1
r , so

P(θ|t, α) = PD(θ|f(t) + α)

• So when trees t are observed, posterior is product of
Dirichlets

• But what if trees t are hidden, and only strings w are
observed? 72 / 87

Algorithms for Bayesian inference
• Posterior is computationally intractable

P(t, θ|w) ∝ P(w, t|θ) P(θ)

• Maximum A Posteriori (MAP) estimation finds the
posterior mode

θ? = argmaxθP(w|θ) P(θ)

• Variational Bayes assumes posterior approximately
factorizes

P(w, t, θ) ≈ Q(t)Q(θ)

EM-like iterations using Inside-Outside (Kurihara and Sato
2006)

• Markov Chain Monte Carlo methods construct a Markov
chain whose states are samples from P(t, θ|w)

73 / 87

Markov chain Monte Carlo

• MCMC algorithms define a Markov chain where:
I the states s are the objects we wish to sample; e.g., s = (t, θ)

— the state space is astronomically large
I transition probabilities P(s′|s) are chosen so that chain

converges on desired distribution π(s)
— many standard recipes for defining P(s′|s) from π(s)

(e.g., Gibbs, Metropolis-Hastings)
• “Run” the chain by:

I pick a start state s0
I pick state st+1 by sampling from P(s′|st)

• To estimate the expected value of any function f of state s
(e.g., rule probabilities θ):

I discard first few “burn-in” samples from chain
I average f (s) over the remaining samples from chain

74 / 87

Outline
Introduction
Formal languages and Grammars

Probabilistic context-free grammars

Hidden Markov Models as PCFGs
Computation with PCFGs

Estimating PCFGs from visible or hidden data

Bayesian inference for PCFGs

Gibbs sampler for (t, θ)

Metropolis-Hastings collapsed sampler for t

Application: Unsupervised morphological analysis of Sesotho verbs

Conclusion

75 / 87

A Gibbs sampler for t and θ

• Gibbs samplers require states factor into components s = (t, θ)

• Update each component in turn by resampling, conditioned on
values for other components

I Resample trees t given strings w and rule probabilities θ
I Resample rule probabilities θ given trees t and priors α

tit1 tn

w1 wi wn

θAj. . .θA1 . . . θA|N|

αA1 αAj αA|N|

. . .

.

. . .

P(t|θ, w, α) =
n

∏
i=1

P(ti|wi, θ)

P(θ|t, w, α) = PD(θ|f(t) + α)

= ∏
A∈N

PD(θ|fA(t) + αA)

• Standard algorithms for sampling these distributions
• Trees t are independent given rule probabilities θ

⇒ each ti can be sampled in parallel
⇒ ti only influences tj via θ (“mixes slowly”, “poor mobility”) 76 / 87

Outline
Introduction
Formal languages and Grammars

Probabilistic context-free grammars

Hidden Markov Models as PCFGs
Computation with PCFGs

Estimating PCFGs from visible or hidden data

Bayesian inference for PCFGs

Gibbs sampler for (t, θ)

Metropolis-Hastings collapsed sampler for t

Application: Unsupervised morphological analysis of Sesotho verbs

Conclusion

77 / 87

Marginalizing out the rule probabilities θ

• Define MCMC sampler whose states are the vectors of
trees t

• Integrate out the rule probabilities θ, collapsing
dependencies and coupling trees

P(t|α) =
∫

∆
P(t|θ) P(θ|α) dθ = ∏

A∈N

Z(fA(t) + αA)

Z(αA)

• Components of state are the trees ti for strings wi
I resample ti given trees t−i for other strings wi

P(ti|t−i, α) =
P(t|α)

P(t−i|α)
= ∏

A∈N

Z(fA(t) + αA)

Z(fA(t−i) + αA)

• (Sample θ from P(θ|t, α) if required).
• If we could sample from

P(ti|wi, t−i, α) =
P(wi|ti)P(ti|t−i, α)

P(wi|t−i, α)

we could build a Gibbs sampler whose states are trees t
78 / 87

Why Metropolis-Hastings?

P(ti|t−i, α) = ∏
A∈N

Z(fA(t) + αA)

Z(fA(t−i) + αA)

• What makes P(ti|t−i, α) so hard to sample?
I Probability of choosing rule r used nr times before ∝ nr + αr
I Previous occurences of r “prime” the rule r
I Rule probabilities can change on the fly inside a sentence
I Breaks dynamic programming sampling algorithms, which

require “context-freeness”
• Metropolis-Hastings algorithms don’t need samples from

P(ti|t−i, α)
I sample from a user-specified proposal distribution Q
I use acceptance-rejection procedure to convert stream of

samples from Q into stream of samples from P(t)
• Proposal distribution Q can be any strictly positive

distribution
I more efficient (fewer rejections) if Q close to P(t)
I our proposal distribution Qi(ti) is PCFG approximation

E[θ|t−i, α] 79 / 87

Metropolis-Hastings collapsed PCFG sampler
• Sampler state: vector of trees t, ti is a parse of wi
• Repeat until convergence:

I randomly choose index i of tree to resample
I compute PCFG probabilities to be used as proposal

distribution

θ̃A→β = E[θA→β|t−i, α] =
fA→β(t−i) + αA→β

∑A→β′∈RA fA→β′(t−i) + αA→β′

I sample a proposal tree t′i from P(ti|wi, θ̃)
I compute acceptance probability A(ti, t′i) for t′i

A(ti, t′i) = min
{

1,
P(t′i|t−i, α)P(ti|wi, θ̃)

P(ti|t−i, α)P(t′i|wi, θ̃)

}

(easy to compute since t′i is fixed)
I choose a random number x ∈ U[0, 1]

— if x < A(ti, t′i) then accept t′i, i.e., replace ti with t′i
— if x > A(ti, t′i) then reject t′i, i.e., keep ti unchanged

80 / 87

Outline
Introduction
Formal languages and Grammars

Probabilistic context-free grammars

Hidden Markov Models as PCFGs
Computation with PCFGs

Estimating PCFGs from visible or hidden data

Bayesian inference for PCFGs

Gibbs sampler for (t, θ)

Metropolis-Hastings collapsed sampler for t

Application: Unsupervised morphological analysis of Sesotho verbs

Conclusion

81 / 87

Sesotho verbal morphology
• Sesotho is a Bantu language with complex morphology,

not “messed up” much by phonology
re
SM

a
T

di
OM

bon
V

a
M

“We see them”
• Demuth’s Sesotho corpus contains morphological parses

for 2,283 distinct verb types; can we learn them
automatically?

• Morphological structure reasonably well described by a
CFG

Verb

SM

r e

T

a d i

OM

b o n

V

a

M

Verb → V

Verb → V M

Verb → SM V M

Verb → SM T V M

Verb → SM T OM V M

• We added 81,755 productions expanding each preterminal
to each of the 16,350 contiguous substrings of any verb in
corpus

82 / 87

Maximum likelihood finds trivial “saturated”
grammar

• Grammar has more productions (81,000) than training
strings (2,283)

• Maximum likelihood (e.g., Inside/Outside, EM) tries to
make predicted probabilities match empirical probabilities

• “Saturated” grammar: every word type has its own
production

V

r e a d i b o n a

Verb

I exactly matches empirical probabilities
I this is what Inside-Outside EM finds
I none of these analyses are correct

83 / 87

Bayesian estimates with sparse prior find nontrivial
structure

Exact
Recall

Precision
F-score

Dirichlet prior parameter α
1 0.01 0.0001 1e-06 1e-08 1e-10

1

0.75

0.5

0.25

0

• Dirichlet prior for
all rules set to
same value α

• Dirichlet prior
prefers sparse
grammars when
α � 1

• Non-trivial
structure emerges
when α < 0.01

• Exact word
match accuracy
≈ 0.54 at
α = 10−5

84 / 87

Outline
Introduction
Formal languages and Grammars

Probabilistic context-free grammars

Hidden Markov Models as PCFGs
Computation with PCFGs

Estimating PCFGs from visible or hidden data

Bayesian inference for PCFGs

Gibbs sampler for (t, θ)

Metropolis-Hastings collapsed sampler for t

Application: Unsupervised morphological analysis of Sesotho verbs

Conclusion

85 / 87

Conclusion and future work

• Bayesian estimates incorporate prior as well as likelihood
I product of Dirichlets is conjugate prior for PCFGs
I can be used to prefer sparse grammars

• Even though the full Bayesian posterior is mathematically
and computationally intractible, it can be approximated
using MCMC

I Gibbs sampler alternates sampling from P(t|θ) and P(θ|t)
I Metropolis-Hastings collapsed sampler integrates out θ and

samples P(ti|t−i)
I C++ implementations available on Brown web site

• Need to compare these methods with Variational Bayes
• MCMC methods are usually more flexible than other

approaches
I should generalize well to more complex models

86 / 87

Summary

• Context-free grammars are a simple model of hierarchical
structure

• The number of trees often grows exponentially with
sentence length (depends on grammar)

• Even so, we can find the most likely parse and the
probability of a string in cubic time

• Maximum likelihood estimation from trees is easy (relative
frequency estimator)

• The Expectation-Maximization algorithm can be used to
estimate production probabilities from strings

• The Inside-Outside algorithm calculates the expectations
needed for EM in cubic time

87 / 87

	Introduction
	Formal languages and Grammars
	Probabilistic context-free grammars
	Hidden Markov Models as PCFGs
	Computation with PCFGs
	Estimating PCFGs from visible or hidden data
	Bayesian inference for PCFGs
	Gibbs sampler for (t,)
	Metropolis-Hastings collapsed sampler for t
	Application: Unsupervised morphological analysis of Sesotho verbs
	Conclusion

