
Bayesian Inference of Grammars

Mark Johnson

joint work with Sharon Goldwater and Tom Griffiths

Microsoft Research / Brown University

July 2007

Outline

Introduction

Learning probabilistic context-free grammars

Morphological segmentation

Learning from types with Chinese restaurant processes

Adaptor grammars

Bigram dependencies in word segmentation

Conclusion

Research goal: language acquisition

I Goal of this research (as yet unachieved):

a grammar learning algorithm that trains from:

Input: “d o g s c h a s e d c a t s”
(actually broad phonemic transcription)

and produces:

Output:

Sentence

Noun

NounStem

d o g

NounSuffix

s

VerbPhrase

Verb

VerbStem

c h a s e

VerbSuffix

d

Noun

NounStem

c a t

NounSuffix

s

Nonparametric Bayes: a new lamppost

Late one night, a drunk guy is crawling around under
a lamppost. A cop comes up and asks him what he’s
doing.

“I’m looking for my keys,” the drunk says. “I lost them
about three blocks away.”

“So why aren’t you looking for them where you dropped
them?” the cop asks.

The drunk looks at the cop, amazed that he’d ask so
obvious a question. “Because the light is better here.”

Talk outline

I Maximum likelihood can be applied to grammar induction
(expectation maximization) but generally produces poor
results. Why?

I Will new nonparametric Bayesian methods do better?
I Chinese restaurant processes and Dirichlet processes

I Strategy: develop methods that work for simple problems
I morphological segmentation
I word segmentation of unsegmented phonemic

transcripts

Probabilistic Context-Free Grammars

I PCFGs are perhaps the simplest models of hierarchical
structure

I Probability of a tree is the product of the probabilities of the rules
used to construct it

1.0 S → NP VP
0.75 NP → George 0.25 NP → Al
0.6 VP → barks 0.4 VP → snores

P

barksGeorge

NP

S

VP

 = 0.45 P

snoresAl

NP

S

VP

 = 0.1

Learning the units of generalization
I Rules are units of generalization in PCFGs
I We can estimate rule probabilities from data

I The Expectation Maximization algorithm finds rule
probabilities that locally maximize likelihood of a set of
strings

I Find rules using “generate and prune” approach:
I generate a large number of possible rules
I estimate the probability of each rule
I prune low probability rules

I Unsupervised estimation of PCFGs generally produces poor
results

I Nonparametric Bayesian techniques (CRPs, DPs)
I integrate production search with parameter search
I let us construct more elaborate (realistic?) models

Outline

Introduction

Learning probabilistic context-free grammars

Morphological segmentation

Learning from types with Chinese restaurant processes

Adaptor grammars

Bigram dependencies in word segmentation

Conclusion

Learning PCFGs using Expectation
Maximization

I ATIS treebank consists of 1,300 hand-constructed parse trees
I input consists of POS tags rather than words
I about 1,000 PCFG rules are needed to build these trees

S

VP

VB

Show

NP

PRP

me

NP

NP

PDT

all

DT

the

JJ

nonstop

NNS

flights

PP

PP

IN

from

NP

NNP

Dallas

PP

TO

to

NP

NNP

Denver

ADJP

JJ

early

PP

IN

in

NP

DT

the

NN

morning

.

.

Probability of training strings

Iteration

log P

20151050

-14000
-14200
-14400
-14600
-14800
-15000
-15200
-15400
-15600
-15800
-16000

Accuracy of parses

Recall
Precision

Iteration

Parse
Accuracy

20151050

1

0.95

0.9

0.85

0.8

0.75

0.7

The PCFG model is wrong

I Parse accuracy drops as likelihood increases
I higher likelihood 6⇒ better parses
I the statistical model is wrong

I Initialized EM with correct parse trees
I started with true rules and their probabilities

⇒ poor performance not due to search error
I Evaluated on training data

I poor performance not due to over-learning

Why didn’t it learn the right grammar?

I higher likelihood 6⇒ parse accuracy
⇒ probabilistic model and/or estimation procedure are wrong

I Bayesian prior preferring smaller grammars doesn’t help
I What could be wrong?

I Wrong model of grammar (Klein and Manning)
I Wrong estimation procedure (Smith and Eisner)
I Wrong training data (Yang)
I Predicting word strings is wrong objective
I Grammar ignores semantics (Zettlemoyer and Collins)

de Marken (1995) “Lexical heads, phrase structure and the induction of
grammar”

Outline

Introduction

Learning probabilistic context-free grammars

Morphological segmentation

Learning from types with Chinese restaurant processes

Adaptor grammars

Bigram dependencies in word segmentation

Conclusion

Learning English verbal morphology
Training data is a sequence of verbs, e.g.

D = (# t a l k i n g #, # j u m p #, . . .)

Goal: infer trees such as:

Word

Stem

t a l k

Suffix

i n g #

Word

Stem

j u m p

Suffix

#

Word → Stem Suffix
Stem → all possible stems

Suffix → all possible suffixes

Maximum likelihood always chooses no
suffixes

I Maximum likelihood selects production probabilities that
minimize KL-divergence between model and data
distributions

I Saturated model with P(Suffix → #) = 1 generates training
data D exactly

⇒ saturated model is maximum likelihood estimate

Word

Stem

t a l k i n g

Suffix

#

Bayesian estimation

I Bayesian estimates incorporate prior P(H) over hypotheses H
(grammars) as well as likelihood P(D|H) of data D

P(H|D)
︸ ︷︷ ︸

Posterior

∝ P(D|H)
︸ ︷︷ ︸

Likelihood

P(H)
︸ ︷︷ ︸

Prior

I Priors can be sensitive to linguistic structure (e.g., a word
should contain a vowel)

I Priors can encode linguistic universals and markedness
preferences (e.g., complex clusters appear at word onsets)

I Priors can prefer sparse solutions
I The choice of the prior is as much a linguistic issue as the

design of the grammar!

Morphological segmentation experiment

I Dirichlet prior prefers grammars with fewer stems and suffixes
I grammars are sparser as Dirichlet parameter α → 0

Word → Stem Suffix
Stem → all possible stems

Suffix → all possible suffixes

Word

Stem

t a l k

Suffix

i n g #

I Trained on orthographic verbs from PTB Wall Street Journal
corpus

I Gibbs sampler samples from posterior distribution over
parses

I reanalyses each word using grammar estimated from
parses of other words

Posterior samples from WSJ verb tokens
α = 0.1 α = 10−5

α = 10−10
α = 10−15

expect expect expect expect
expects expects expects expects

expected expected expected expected
expecting expect ing expect ing expect ing

include include include include
includes includes includ es includ es
included included includ ed includ ed

including including including including
add add add add

adds adds adds add s
added added add ed added

adding adding add ing add ing
continue continue continue continue

continues continues continue s continue s
continued continued continu ed continu ed

continuing continuing continu ing continu ing
report report report report

reports report s report s report s
reported reported reported reported

reporting report ing report ing report ing
transport transport transport transport

transports transport s transport s transport s
transported transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsiz e downsiz e

downsized downsiz ed downsiz ed downsiz ed
downsizing downsiz ing downsiz ing downsiz ing

dwarf dwarf dwarf dwarf
dwarfs dwarf s dwarf s dwarf s

dwarfed dwarf ed dwarf ed dwarf ed
outlast outlast outlast outlas t

outlasted outlast ed outlast ed outlas ted

Log posterior of models on token data

Posterior
True suffixes
Null suffixes

Dirichlet prior parameter α

log Pα

11e-101e-20

-800000

-1e+06

-1.2e+06

I Correct solution is nowhere near as likely as posterior
⇒ model is wrong!

Independence assumption in PCFG model

P

Word

Stem

t a l k

Suffix

i n g #

= P(Word → Stem Suffix) P(Stem → # t a l k) P(Suffix → i n g #)

I Model assumes relative frequency of each suffix to be the same
for all stems

I This turns out not to be true

Relative frequencies of inflected verb forms

Types and tokens

I A word type is a distinct word shape
I A word token is an occurrence of a word

D = “the cat chased the other cat”
Tokens(D) = “the”, “cat”, “chased”, “the”, “other”, “cat”

Types(D) = “the”, “cat”, “chased”, “other”

I Estimating production probabilities from word types rather
than word tokens eliminates (most) frequency variation

I 4 common verb suffixes, so when estimating from verb
types P(Suffix → i n g #) ≈ 0.25

I Some psycholinguistics claim that children learn morphology
from types (Bybee, Pierrehumbert)

Posterior samples from WSJ verb types
α = 0.1 α = 10−5

α = 10−10
α = 10−15

expect expect expect exp ect
expects expect s expect s exp ects

expected expect ed expect ed exp ected
expect ing expect ing expect ing exp ecting

include includ e includ e includ e
include s includ es includ es includ es

included includ ed includ ed includ ed
including includ ing includ ing includ ing

add add add add
adds add s add s add s
add ed add ed add ed add ed

adding add ing add ing add ing
continue continu e continu e continu e
continue s continu es continu es continu es
continu ed continu ed continu ed continu ed

continuing continu ing continu ing continu ing
report report repo rt rep ort

reports report s repo rts rep orts
reported report ed repo rted rep orted

report ing report ing repo rting rep orting
transport transport transport transport
transport s transport s transport s transport s
transport ed transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsi ze downsi ze
downsiz ed downsiz ed downsi zed downsi zed
downsiz ing downsiz ing downsi zing downsi zing

dwarf dwarf dwarf dwarf
dwarf s dwarf s dwarf s dwarf s
dwarf ed dwarf ed dwarf ed dwarf ed

outlast outlast outlas t outla st
outlasted outlas ted outla sted

Log posterior of models on type data

Optimal suffixesTrue suffixes
Null suffixes

Dirichlet prior parameter α

log Pα

11e-101e-20

0

-200000

-400000

I Correct solution is close to optimal at α = 10−3

Outline

Introduction

Learning probabilistic context-free grammars

Morphological segmentation

Learning from types with Chinese restaurant processes

Adaptor grammars

Bigram dependencies in word segmentation

Conclusion

Generating tokens but learning from types

I Over-dispersion ⇒ estimate from types rather than tokens
I But in many cases the types are not available (e.g., speech

does not come segmented into words (“s e e t h e d o g g i e”))
I Labeled Chinese restaurant process models

I Labeling distribution PG generates types
I Chinese restaurant process replicates types to produce

tokens
I labeling distribution can be estimated from the CRP

I Adaptor grammars use CFGs to produce the labels for a
hierarchy of CRPs

Chinese restaurant process (1st enters)

&%
'$

1
&%
'$

&%
'$

&%
'$

I Tokens ∼ customers, types ∼ tables, analyses ∼ labels
I Each “table” can seat an infinite number of “customers”
I Each “table” has a “dish” (label) shared by all “customers”
I Labels are generated by labeling distribution PG
I Customer n + 1 walks into restaurant with nk customers

sitting at table k ∈ {1, . . . , m}
I sits at old table k ≤ m with probability nk/(n + α) and

emits table’s label
I sits at new table k = m + 1 with probability α/(n + α)

and generates new label y for table with probability PG(y)

Chinese restaurant process (1st seated)

&%
'$

�@
jump ing

PG(jump + ing)

y
&%
'$

&%
'$

&%
'$

I Tokens ∼ customers, types ∼ tables, analyses ∼ labels
I Each “table” can seat an infinite number of “customers”
I Each “table” has a “dish” (label) shared by all “customers”
I Labels are generated by labeling distribution PG
I Customer n + 1 walks into restaurant with nk customers

sitting at table k ∈ {1, . . . , m}
I sits at old table k ≤ m with probability nk/(n + α) and

emits table’s label
I sits at new table k = m + 1 with probability α/(n + α)

and generates new label y for table with probability PG(y)

Chinese restaurant process (2nd enters)

&%
'$

�@
jump ing

1
1 + α

y
&%
'$

α

1 + α

&%
'$

&%
'$

I Tokens ∼ customers, types ∼ tables, analyses ∼ labels
I Each “table” can seat an infinite number of “customers”
I Each “table” has a “dish” (label) shared by all “customers”
I Labels are generated by labeling distribution PG
I Customer n + 1 walks into restaurant with nk customers

sitting at table k ∈ {1, . . . , m}
I sits at old table k ≤ m with probability nk/(n + α) and

emits table’s label
I sits at new table k = m + 1 with probability α/(n + α)

and generates new label y for table with probability PG(y)

Chinese restaurant process (2nd seated)

&%
'$

�@
jump ing

y y
&%
'$

&%
'$

&%
'$

I Tokens ∼ customers, types ∼ tables, analyses ∼ labels
I Each “table” can seat an infinite number of “customers”
I Each “table” has a “dish” (label) shared by all “customers”
I Labels are generated by labeling distribution PG
I Customer n + 1 walks into restaurant with nk customers

sitting at table k ∈ {1, . . . , m}
I sits at old table k ≤ m with probability nk/(n + α) and

emits table’s label
I sits at new table k = m + 1 with probability α/(n + α)

and generates new label y for table with probability PG(y)

Chinese restaurant process (3rd enters)

&%
'$

�@
jump ing

2
2 + α

y y
&%
'$

α

2 + α

&%
'$

&%
'$

I Tokens ∼ customers, types ∼ tables, analyses ∼ labels
I Each “table” can seat an infinite number of “customers”
I Each “table” has a “dish” (label) shared by all “customers”
I Labels are generated by labeling distribution PG
I Customer n + 1 walks into restaurant with nk customers

sitting at table k ∈ {1, . . . , m}
I sits at old table k ≤ m with probability nk/(n + α) and

emits table’s label
I sits at new table k = m + 1 with probability α/(n + α)

and generates new label y for table with probability PG(y)

Chinese restaurant process (3rd seated)

&%
'$

�@
jump ing

y y
&%
'$

�@
walk s

PG(walk + s)

y
&%
'$

&%
'$

I Tokens ∼ customers, types ∼ tables, analyses ∼ labels
I Each “table” can seat an infinite number of “customers”
I Each “table” has a “dish” (label) shared by all “customers”
I Labels are generated by labeling distribution PG
I Customer n + 1 walks into restaurant with nk customers

sitting at table k ∈ {1, . . . , m}
I sits at old table k ≤ m with probability nk/(n + α) and

emits table’s label
I sits at new table k = m + 1 with probability α/(n + α)

and generates new label y for table with probability PG(y)

Chinese restaurant process (4th enters)

&%
'$

�@
jump ing

2
3 + α

y y
&%
'$

�@
walk s

1
3 + α

y
&%
'$

α

3 + α

&%
'$

I Tokens ∼ customers, types ∼ tables, analyses ∼ labels
I Each “table” can seat an infinite number of “customers”
I Each “table” has a “dish” (label) shared by all “customers”
I Labels are generated by labeling distribution PG
I Customer n + 1 walks into restaurant with nk customers

sitting at table k ∈ {1, . . . , m}
I sits at old table k ≤ m with probability nk/(n + α) and

emits table’s label
I sits at new table k = m + 1 with probability α/(n + α)

and generates new label y for table with probability PG(y)

Chinese restaurant process (4th seated)

&%
'$

�@
jump ing

y y
&%
'$

�@
walk s

y
&%
'$

�@
talk ed

PG(talk + ed)

y
&%
'$

I Tokens ∼ customers, types ∼ tables, analyses ∼ labels
I Each “table” can seat an infinite number of “customers”
I Each “table” has a “dish” (label) shared by all “customers”
I Labels are generated by labeling distribution PG
I Customer n + 1 walks into restaurant with nk customers

sitting at table k ∈ {1, . . . , m}
I sits at old table k ≤ m with probability nk/(n + α) and

emits table’s label
I sits at new table k = m + 1 with probability α/(n + α)

and generates new label y for table with probability PG(y)

Chinese restaurant process (5th enters)

&%
'$

�@
jump ing

2
4 + α

y y
&%
'$

�@
walk s

1
4 + α

y
&%
'$

�@
talk ed

1
4 + α

y
&%
'$

α

4 + α

I Tokens ∼ customers, types ∼ tables, analyses ∼ labels
I Each “table” can seat an infinite number of “customers”
I Each “table” has a “dish” (label) shared by all “customers”
I Labels are generated by labeling distribution PG
I Customer n + 1 walks into restaurant with nk customers

sitting at table k ∈ {1, . . . , m}
I sits at old table k ≤ m with probability nk/(n + α) and

emits table’s label
I sits at new table k = m + 1 with probability α/(n + α)

and generates new label y for table with probability PG(y)

Chinese restaurant process (5th seated)

&%
'$

�@
jump ing

y yy
&%
'$

�@
walk s

y
&%
'$

�@
talk ed

y
&%
'$

I Tokens ∼ customers, types ∼ tables, analyses ∼ labels
I Each “table” can seat an infinite number of “customers”
I Each “table” has a “dish” (label) shared by all “customers”
I Labels are generated by labeling distribution PG
I Customer n + 1 walks into restaurant with nk customers

sitting at table k ∈ {1, . . . , m}
I sits at old table k ≤ m with probability nk/(n + α) and

emits table’s label
I sits at new table k = m + 1 with probability α/(n + α)

and generates new label y for table with probability PG(y)

Estimating CRP models via Gibbs sampling

&%
'$

�@
jump ing

y yy
&%
'$

�@
walk s

y
&%
'$

�@
talk ed

y
&%
'$

I Gibbs sampling: resample the analysis of each word token
given the analyses of other tokens

I Each word token is a customer: its table’s label is its analysis
I Gibbs sampling step:

I remove token from its current table (delete empty tables)
I choose a table for the token (possibly creating new table)

I Labeling distribution PG estimated from labels on tables
I PG is estimated from types (approximately)

Outline

Introduction

Learning probabilistic context-free grammars

Morphological segmentation

Learning from types with Chinese restaurant processes

Adaptor grammars

Bigram dependencies in word segmentation

Conclusion

From PCFGs to adaptor grammars

I An adaptor grammar is a PCFG together with a parameter αA
for each non-terminal A

I If αA > 0 then A is adapted
I Each adapted non-terminal A has its own CRP, labeled with

trees generated by A
I Non-adapted non-terminals expand as in PCFG, i.e., pick

production A → B1 . . . Bn and recursively expand B1, . . . , Bn
I An adapted non-terminal A expands by:

I each expansion is a customer entering A’s restaurant
I if customer sits at new table, generate tree to label new

table as if A were not adapted
I return the tree labeling the customer’s table

Adaptor grammar morphology example
Word

Stem

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

#

Word → Stem Suffix
Stem → # Chars

Suffix → #
Suffix → Chars #
Chars → Char
Chars → Char Chars
Char → a | . . . | z

I CRPs for non-terminals Word, Stem and Suffix
I Stem and Suffix CRPs generate all possible stems and

suffixes

Morphology adaptor grammar (0)

. . .

. . .

. . .

Word restaurant
Word → Stem Suffix

Stem restaurant
Stem → #

Stem → # Chars

Suffix restaurant
Suffix → #

Suffix → Chars #

Chars factory
Chars → Char

Chars → Char Chars
Char → a . . . z

Morphology adaptor grammar (1a)

. . .

. . .

. . .

Word restaurant
Word → Stem Suffix

•

Stem restaurant
Stem → #

Stem → # Chars

Suffix restaurant
Suffix → #

Suffix → Chars #

Chars factory
Chars → Char

Chars → Char Chars
Char → a . . . z

Morphology adaptor grammar (1b)

. . .

. . .

. . .

Word restaurant
Word → Stem Suffix

•

Stem restaurant
Stem → #

Stem → # Chars •

Suffix restaurant
Suffix → #

Suffix → Chars # •
Chars factory
Chars → Char

Chars → Char Chars
Char → a . . . z

Morphology adaptor grammar (1c)

. . .

. . .

. . .

Word restaurant
Word → Stem Suffix

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y•

Suffix restaurant
Suffix → #

Suffix → Chars #

Suffix

Char

s

#

•
Chars factory
Chars → Char

Chars → Char Chars
Char → a . . . z

Morphology adaptor grammar (1d)

. . .

. . .

. . .

Word restaurant
Word → Stem Suffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y•

Suffix restaurant
Suffix → #

Suffix → Chars #

Suffix

Char

s

#

•
Chars factory
Chars → Char

Chars → Char Chars
Char → a . . . z

Morphology adaptor grammar (2a)

. . .

. . .

. . .

Word restaurant
Word → Stem Suffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y•

Suffix restaurant
Suffix → #

Suffix → Chars #

Suffix

Char

s

#

•

•

Chars factory
Chars → Char

Chars → Char Chars
Char → a . . . z

Morphology adaptor grammar (2b)

. . .

. . .

. . .

Word restaurant
Word → Stem Suffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y•

Suffix restaurant
Suffix → #

Suffix → Chars #

Suffix

Char

s

#

•

•

•

Chars factory
Chars → Char

Chars → Char Chars
Char → a . . . z

•

Morphology adaptor grammar (2c)

. . .

. . .

. . .

Word restaurant
Word → Stem Suffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant
Suffix → #

Suffix → Chars #

Suffix

Char

s

#

•

•

•

Chars factory
Chars → Char

Chars → Char Chars
Char → a . . . z

•

Morphology adaptor grammar (2d)

. . .

. . .

. . .

Word restaurant
Word → Stem Suffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant
Suffix → #

Suffix → Chars #

Suffix

Char

s

#

•

•

•

Chars factory
Chars → Char

Chars → Char Chars
Char → a . . . z

•

Morphology adaptor grammar (3)

. . .

. . .

. . .

Word restaurant
Word → Stem Suffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant
Suffix → #

Suffix → Chars #

Suffix

Char

s

#

•

•

•

Chars factory
Chars → Char

Chars → Char Chars
Char → a . . . z

•

•

Morphology adaptor grammar (4a)

. . .

. . .

. . .

Word restaurant
Word → Stem Suffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant
Suffix → #

Suffix → Chars #

Suffix

Char

s

#

•

•

•

•

Chars factory
Chars → Char

Chars → Char Chars
Char → a . . . z

•

•

Morphology adaptor grammar (4b)

. . .

. . .

. . .

Word restaurant
Word → Stem Suffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant
Suffix → #

Suffix → Chars #

Suffix

Char

s

#

•

•

•

•

•
Chars factory
Chars → Char

Chars → Char Chars
Char → a . . . z

•

•

•

Morphology adaptor grammar (4c)

. . .

. . .

. . .

Word restaurant
Word → Stem Suffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant
Suffix → #

Suffix → Chars #

Suffix

Char

s

#
Suffix

#

•

•

•

•

•
Chars factory
Chars → Char

Chars → Char Chars
Char → a . . . z

•

•

•

Morphology adaptor grammar (4d)

. . .

. . .

. . .

Word restaurant
Word → Stem Suffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant
Stem → #

Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant
Suffix → #

Suffix → Chars #

Suffix

Char

s

#
Suffix

#

•

•

•

Word

Stem

Chars

b u y

Suffix

#

•

•
Chars factory
Chars → Char

Chars → Char Chars
Char → a . . . z

•

•

•

From Chinese restaurants to Dirichlet
processes

I Labeled Chinese restaurant processes take a base distribution
PG and return a stream of samples from a different
distribution with the same support

I The Chinese restaurant process is a sequential process,
generating the next item conditioned on the previous ones

I We can get a different distribution each time we run a CRP
(placing customers on tables and labeling tables are random)

I Abstracting away from sequential generation, a CRP maps PG
to a distribution over distributions DP(α, PG)

I DP(α, PG) is called a Dirichlet process with concentration
parameter α and base distribution PG

I Distributions in DP(α, PG) are discrete (w.p. 1) even if the base
distribution PG is continuous

PCFGs as recursive mixtures

The distributions over strings induced by a PCFG in
Chomsky-normal form (i.e., all productions are of the form A → B C
or A → w, where A, B, C ∈ N and w ∈ T) is GS where:

GA = ∑
A→B C∈RA

θA→B CGB • GC + ∑
A→w∈RA

θA→wδw

(P • Q)(z) = ∑
xy=z

P(x)Q(y)

δw(x) = 1 if w = x and 0 otherwise

In fact, GA(x) = P(A ⇒? x|θ), the sum of the probability of all
trees with root node A and yield x

Adaptor grammars

An adaptor grammar (G, θ, α) is a PCFG (G, θ) together with a
parameter vector α where for each A ∈ N, αA is the parameter of
the Dirichlet process associated with A.

GA ∼ DP(αA, HA) if αA > 0
= HA if αA = 0

HA = ∑
A→B C∈RA

θA→B CGB • GC + ∑
A→w∈RA

θA→wδw

The probabilistic language defined by the grammar is GS.
There is one Dirichlet Process for each non-terminal A where
αA > 0. Its base distribution HA is a mixture of the language
generated by the Dirichlet processes associated with other
non-terminals.

Estimating adaptor grammars

I Need to estimate:
I table labels and customer count for each table
I (optional) probabilities of productions labeling tables

I Component-wise Metropolis-Hastings sampler
I ith component is the parse tree for input string i
I re-parse input i using grammar estimated from parses for

other inputs
I Sampling directly from conditional distribution of parses

seems intractable
I construct PCFG approximation on the fly
I each table label corresponds to a production in PCFG

approximation

Verbal morphology
Verb → Stem
Verb → Stem Suffix
Stem → Chars
Suffix → Chars
Chars → Char
Chars → Char Chars
Char → a . . . z

Verb

Stem

t a k e

Verb

Stem

i m p r o v

Suffix

e

Verb

Stem

c o n

Suffix

f o r m i n g

Verb

Stem

h a

Suffix

v e

I Restaurants for Verb, Stem and Suffix
I Given orthographic verb tokens from WSJ as input, 70%

tokens, 66% types correctly segmented; many errors
linguistically plausible

I Extends naturally to:
I hidden word classes
I agglutinative languages (with little phonology)

Unigram model of word segmentation
I Unigram model: each word is generated independently
I Input is unsegmented broad phonemic transcription (Brent)

Example: y u w a n t t u s i D 6 b u k
I CRP for Word non-terminal caches previously seen words

Words → Word
Words → Word Words
Word → Chars
Chars → Char
Chars → Char Chars
Char → a | . . . | z

Words

Word

y u

Word

w a n t

Word

t u

Word

s i

Word

D 6

Word

b U k

Words

Word

h & v

Word

6

Word

d

Word

r I N k

I Unigram word segmentation on Brent corpus: 54% token
f-score, 59% type f-score

Morphology and word segmentation

Words → Word
Words → Word Words
Word → Stem Suffix
Word → Stem
Stem → Chars
Suffix → Chars
Chars → Char
Chars → Char Chars
Char → a| . . . |z

Words

Word

Stem

w a n

Suffix

6

Word

Stem

k l o z

Suffix

I t

Words

Word

Stem

y u

Suffix

h & v

Word

Stem

t u

Word

Stem

t E l

Suffix

m i

I CRPs for Word, Stem and Suffix terminals
I Doesn’t do a good job of learning morphology

Outline

Introduction

Learning probabilistic context-free grammars

Morphological segmentation

Learning from types with Chinese restaurant processes

Adaptor grammars

Bigram dependencies in word segmentation

Conclusion

Unigram model often finds collocations

I Unigram word segmentation model assumes each word is
generated independently

I But there are strong inter-word dependencies (collocations)
I Unigram model can only capture such dependencies by

analyzing collocations as words
Words

Word

t e k

Word

D 6 d O g i

Word

Q t

Words

Word

y u w a n t t u

Word

s i D 6

Word

b U k

Hierarchical CRP bigram word segmentation

I Bigram model: predict next word based on preceding word
I Each word w has a CRP BIGRAM w to predict following word

I Set of words is unknown, so CRPs constructed on the fly
I Each BIGRAMw CRP shares same labeling distribution

UNIGRAM
I UNIGRAM is a CRP that generates a common vocabulary

for all bigrams
I BIGRAMw “backs off” to UNIGRAM very much like

Kneser-Ney smoothing
wi | wi−1, BIGRAMwi−1 ∼ BIGRAMwi−1

BIGRAMwi−1 | α2, UNIGRAM ∼ DP(α2, UNIGRAM)
UNIGRAM | α1, P0 ∼ DP(α1, P0)

Bigram word segmentation model (0)

the book the book

UNIGRAM ��
��

��
��

��
��

��
��

BIGRAM# ��
��

Bigram word segmentation model (1)

the book the book

UNIGRAM ��
��

the

v
��
��

��
��

��
��

BIGRAM# ��
��

the

v

BIGRAM the ��
��

Bigram word segmentation model (2)

the book the book

UNIGRAM ��
��

the

v
��
��
book

v
��
��

��
��

BIGRAM# ��
��

the

v

BIGRAM the ��
��
book

v

BIGRAMbook ��
��

Bigram word segmentation model (3)

the book the book

UNIGRAM ��
��

the

v v
��
��
book

v
��
��

��
��

BIGRAM# ��
��

the

v

BIGRAM the ��
��
book

v

BIGRAMbook ��
��

the

v

Bigram word segmentation model (4)

the book the book

UNIGRAM ��
��

the

v v
��
��
book

v
��
��

��
��

BIGRAM# ��
��

the

v

BIGRAM the ��
��
book

v v

BIGRAMbook ��
��

the

v

Bigram segmentation model

I Implemented using Gibbs sampling
I ith component is “word boundary at position i”
I sampling amounts to possibly splitting a word at

position i or joining the two words abutting at position i
I Performs significantly better than unigram model

I bigram: 77% token f-score, 63% type f-score
I unigram: 54% token f-score, 59% type f-score

I Number of CRPs is number of words, which is not known in
advance

⇒ cannot be formulated as an adaptor grammar (which have a
CRP per non-terminal)

Outline

Introduction

Learning probabilistic context-free grammars

Morphological segmentation

Learning from types with Chinese restaurant processes

Adaptor grammars

Bigram dependencies in word segmentation

Conclusion

Conclusion and future work
I Chinese restaurant process models can:

I interpolate between types and tokens (morphology)
I learn the basic units of generalization (morphology, word

segmentation)
I Adaptor grammars can express many (but not all)

hierarchical CRP models
I General-purpose inference algorithm
I Can model other tasks (e.g., hierarchical clustering)

I Still a work in progress
I Is there a generalization of adaptor grammars that

includes the bigram word segmentation model?
I Difficult to select priors to get desired behavior
I Gibbs sampler seems slow to converge with complex

grammars and large data sets

Morpheme frequencies are useful

Yarowsky and Wicentowski (2000) “Minimally supervised
Morphological Analysis by Multimodal Alignment”

	Introduction
	Learning probabilistic context-free grammars
	Morphological segmentation
	Learning from types with Chinese restaurant processes
	Adaptor grammars
	Bigram dependencies in word segmentation
	Conclusion

