Statistical models for natural language parsing

Mark Johnson

Microsoft Research / Brown University

July 2007

Outline

Introduction

Non-local dependencies and the PCFG MLE

Generative statistical parsers

Exponential (a.k.a. Maximum Entropy) parsing models

Coarse to fine reranking

Self-training of the reranking parser

Sample parser errors

Preview of natural language parsing

- Non-local dependencies cause PCFG Maximum Likelihood Estimator (MLE) to produce sub-optimal grammars
- State-splitting or decorating with features can make non-local dependencies local
- Exponential (a.k.a. Maximum Entropy) models aren't as adversely affected by non-local dependencies as PCFGs
- But MLE seems difficult to compute ⇒ Maximum Conditional Likelihood Estimation (MCLE)
- MCLE also seems better suited to parsing tasks if PCFG doesn't accurately describe distribution of strings
- Coarse-to-fine reranking combines PCFG and exponential models to produce the most accurate parsers we have today

Treebank corpora

- The Penn treebank contains hand-annotated parse trees for $\sim 50,000$ sentences
- Treebanks also exist for the Brown corpus, the Switchboard corpus (spontaneous telephone conversations) and Chinese and Arabic corpora

Outline

Introduction

Non-local dependencies and the PCFG MLE

Generative statistical parsers

Exponential (a.k.a. Maximum Entropy) parsing models

Coarse to fine reranking

Self-training of the reranking parser

Sample parser errors

Estimating a grammar from a treebank

- *Maximum likelihood principle*: Choose the grammar and rule probabilities that make the trees in the corpus *as likely as possible*
 - read the rules off the trees
 - for PCFGs, set rule probabilities to the *relative frequency* of each rule in the treebank

 $P(VP \rightarrow V NP) = \frac{Number \text{ of times } VP \rightarrow V NP \text{ occurs}}{Number \text{ of times } VP \text{ occurs}}$

• If the language is generated by a PCFG and the treebank trees are its derivation trees, the estimated grammar converges to the true grammar.

Estimating PCFGs from visible data

Non-local dependencies and PCFG MLE

Dividing by partition function Z

Other values do better!

Make dependencies local – GPSG-style

Outline

Introduction

Non-local dependencies and the PCFG MLE

Generative statistical parsers

Exponential (a.k.a. Maximum Entropy) parsing models

Coarse to fine reranking

Self-training of the reranking parser

Sample parser errors

Generative statistical parsers

- Splitting node labels (a.k.a. decorating the tree with features) enables PCFG to capture non-local dependencies
- Modern generative statistical parsers track around 7 different non-local dependencies
- These dependencies are encoded as "features" on nodes
- Most combinations of features are not observed in training data, but will occur in new sentences
 ⇒ smoothing is essential!

"Head to head" dependencies

- *Lexicalization* captures syntactic and semantic dependencies
- · Lexicalized structural preferences may be most important

- Predicted node is shown in red
- Conditioning nodes are shown in blue

- Predicted node is shown in red
- Conditioning nodes are shown in blue

- Predicted node is shown in red
- Conditioning nodes are shown in blue

- Predicted node is shown in red
- Conditioning nodes are shown in blue

- Predicted node is shown in red
- Conditioning nodes are shown in blue

- Predicted node is shown in red
- Conditioning nodes are shown in blue

- Predicted node is shown in red
- Conditioning nodes are shown in blue

Summary so far

- Maximum likelihood is a good way of estimating a grammar
- Maximum likelihood estimation of a PCFG from a treebank is easy, and works well *if the trees are accurate*
- But real language has many more dependencies than treebank grammar describes
- \Rightarrow relative frequency estimator not MLE
 - Make non-local dependencies local by splitting categories
 - \Rightarrow Astronomical number of possible categories
 - Find some way of accurately estimating models in the presence of unmodeled dependencies
 - \Rightarrow exponential models

Outline

Introduction

Non-local dependencies and the PCFG MLE

Generative statistical parsers

Exponential (a.k.a. Maximum Entropy) parsing models

Coarse to fine reranking

Self-training of the reranking parser

Sample parser errors

Exponential models

Exponential models are defined in terms of features, where a *feature* is any real-valued function on Ψ_G .

Let f_1, \ldots, f_m be features, and $\lambda_1, \ldots, \lambda_m$ be real-valued feature weights. An *exponential model* has the form:

$$P_{\lambda}(\psi) = \frac{W_{\lambda}(\psi)}{Z_{\lambda}}$$
$$W_{\lambda}(\psi) = \exp \sum_{j=1}^{m} \lambda_{j} f_{j}(\psi)$$
$$Z_{\lambda} = \sum_{\psi' \in \Psi_{G}} W_{\lambda}(\psi')$$

 $W_{\lambda}(\psi)$ is the weight (unnormalized probability) of parse ψ . Z_{λ} is called the *partition function*.

Exponential models are also known as *Gibbs models*, *log-linear models* and *Maximum Entropy models*.

PCFGs are exponential models

 Ψ = set of all trees generated by PCFG *G*

 $f_i(\psi)$ = number of times the *j*th rule is used in ψ

 $p(r_j)$ = probability of *j*th rule in *G*

Set weight $\lambda_j = \log p(r_j)$

$$f\begin{pmatrix} S\\ NP & VP\\ | & |\\ \text{rice grows} \end{pmatrix} = \begin{bmatrix} 1\\ S \rightarrow NP & VP & NP \rightarrow \text{rice } NP \rightarrow \text{bananas } VP \rightarrow \text{grows } VP \rightarrow \text{grow} \end{bmatrix}$$
$$P(\psi) = \prod_{j=1}^{m} p(r_j)^{f_j(\psi)} = \prod_{j=1}^{m} (\exp \lambda_j)^{f_j(\psi)} = \exp \sum_{j=1}^{m} \lambda_j f_j(\psi)$$

So a PCFG is just an exponential model with $Z_{\lambda} = 1$.

Advantages of exponential models

- Exponential models are very flexible ...
- Features *f* can be *any function of parses* ...
 - whether a particular structure occurs in a parse
 - conjunctions of prosodic and syntactic structure
- Parses ψ need not be trees, but *can be anything at all*
 - ► Feature structures (LFG, HPSG)
- Exponential models are related to other popular models
 - Harmony theory and optimality theory
 - They are also called *Maximum Entropy* models and *log-linear* models

Modeling dependencies

- It's usually difficult to design a PCFG model that captures a particular set of dependencies
 - probability of the tree must be broken down into a product of *conditional probability distributions*
 - non-local dependencies must be expressed in terms of GPSG-style feature passing
- It's easy to make exponential models sensitive to new dependencies
 - add a new feature functions to existing feature functions
 - figuring out what the right dependencies are is hard, but incorporating them into an exponential model is easy

MLE of exponential models from visible data

Visible training data: Parses $\Psi = \psi_1, \ldots, \psi_n$

$$\log L(\lambda) = \sum_{i=1}^{n} \log P_{\lambda}(\psi_{i})$$
$$= \sum_{i=1}^{n} \left(\log W_{\lambda}(\psi_{i}) - \log \sum_{\psi \in \Psi_{G}} W_{\lambda}(\psi) \right)$$

$$rac{\partial \log L(oldsymbol{\lambda})}{\partial \lambda_j} \;=\; \sum_{i=1}^n ig(f_j(\psi_i) - \mathrm{E}_{\lambda}[f_j]ig)$$

So the likelihood is maximized when the empirical frequency of each feature equals its expected frequency.

Maximizing likelihood of visible data is hard!

Maximizing likelihood requires summation over all of Ψ_G , even with fully visible data!

Maximizing likelihood contrasts the training data trees Ψ with Ψ_G ; i.e., select λ to maximize $\sum_{i=1}^{n} (\log W_{\lambda}(\psi_i) - \log \sum_{\psi \in \Psi_G} W_{\lambda}(\psi)).$ But Ψ_G is the set of all parses of all sentences!

Estimation by maximizing conditional likelihood

Maximize the *conditional likelihood* of the correct parses Ψ *given their yield* w.

$$\log L(\lambda) = \sum_{i=1}^{n} \log P_{\lambda}(\psi_{i}|w_{i})$$

$$= \sum_{i=1}^{n} \left(\log W_{\lambda}(\psi_{i}) - \log \sum_{\psi \in \Psi_{G}(w_{i})} W_{\lambda}(\psi) \right)$$

$$\frac{\partial \log L(\lambda)}{\partial \lambda_{j}} = \sum_{i=1}^{n} \left(f_{j}(\psi_{i}) - E_{\lambda}[f_{j}|w_{i}] \right)$$

So conditional likelihood is maximized when the empirical frequency of each feature equals its expected frequency *conditioned on the yields*.

Maximizing conditional likelihood is easier

Pseudo-likelihood is consistent for the conditional distribution

Maximizing conditional likelihood requires summing over $\Psi_G(w_i), i = 1, ..., n$ (obtained by parsing).

Conditional likelihood contrasts each element of training data ψ_i with the parses of w_i ; i.e., adjust λ to maximize $\sum_{i=1}^{n} (\log W_{\lambda}(\psi_i) - \log \sum_{\psi' \in \Psi_G(w_i)} W_{\lambda}(\psi')).$

Conditional likelihood is better for parsing

Parsing exploits $P(\psi|w)$, which MCL optimizes.

If the grammar does not generate strings accurately, ML and MCL can be quite different!

Conditional ML estimation

 w_i $f(\psi_i)$ $\{f(\psi): \psi \in \Psi_G(w_i), \psi \neq \psi_i\}$ sentence 1(1,3,2)(2,2,3)(3,1,5)(2,6,3)sentence 2(7,2,1)(2,5,5)sentence 3(2,4,2)(1,1,7)(7,2,1).........

- Parser designer specifies *feature functions* $f = (f_1, \ldots, f_m)$
- A parser produces trees $\Psi(w)$ for each sentence $w \in w_1, \ldots, w_n$
- Treebank tells us correct tree $\psi_i \in \Psi(w_i)$ for sentence w_i
- Feature functions f apply to each tree $\psi \in \Psi_G(w)$, producing feature values $f(\psi) = (f_1(\psi), \dots, f_m(\psi))$
- MCLE estimates feature weights $\widehat{\lambda}$ using a gradient-based numerical optimizer

Regularization

- With a large number of features, exponential models can over-fit the training data
- Regularization: add *bias* term to ensure $\hat{\lambda}$ is finite and small
- In following experiments, regularizer is a polynomial penalty term

$$\widehat{\lambda} = \operatorname{argmax}_{\lambda} \log \sum_{i=1}^{n} P_{\lambda}(\psi_{i}|w_{i}) - c \sum_{j=1}^{m} |\lambda_{j}|^{p}$$
$$= \operatorname{argmax}_{w} \sum_{i=1}^{n} \left(\sum_{j=1}^{m} \lambda_{j} f_{j}(\psi_{i}) - \log Z_{\lambda}(w_{i}) \right) - c \sum_{j=1}^{m} |\lambda_{j}|^{p}$$

- p = 2 gives a *Gaussian prior*.
- We maximize this expression using *numerical optimization* (Limited Memory Variable Metric)

Conditional vs joint estimation

In this slide, let ψ be a parse tree without the terminal string w

 $\mathbf{P}(\boldsymbol{\psi}, \boldsymbol{w}) \; = \; \mathbf{P}(\boldsymbol{\psi} | \boldsymbol{w}) \mathbf{P}(\boldsymbol{w})$

- ML optimizes probability of training trees ψ and strings w
- MCLE maximizes probability of trees given strings
 - Conditional estimation uses less information from the data
 - learns nothing from distribution of strings P(w)
 - learns nothing from unambiguous sentences (!)
- Joint estimation should be better (lower variance) if your model correctly relates $P(\psi|w)$ and P(w)
- Conditional estimation should be better if your model incorrectly relates $P(\psi|w)$ and P(w)

Linguistic representations and features

- Probability of a parse ψ is completely determined by its feature vector (*f*₁(ψ),..., *f*_m(ψ))
- The actual linguistic representation of parse ψ is *irrelevant* as long as it is rich enough to calculate features $f(\psi)$
- Feature functions define the kinds of generalizations that the learner can extract
 - parses with the same feature values will be assigned the same probability
 - the choice of feature functions is as much a linguistic decision than the choice of representations
- Features can be arbitrary functions
 - the linguistic properties they encode *need not be directly* represented in the parse
 - very different from PCFGs, where the tree label and shape determines the generalizations extracted

Outline

Introduction

Non-local dependencies and the PCFG MLE

Generative statistical parsers

Exponential (a.k.a. Maximum Entropy) parsing models

Coarse to fine reranking

Self-training of the reranking parser

Sample parser errors

Coarse to fine parsing

- Parsing with a grammar with a lot of features (PCFG nonterminals) is slow, even using the dynamic programming algorithms
- Coarse to fine parsing uses a sequence of grammars. The features of the coarse-grained grammars are equivalence classes of the fined-grained features.
- The parses produced by the coarse-grained grammars constrain the search with the fine-grained grammar.
- The Charniak generative parser uses a coarse-grained PCFG to identify which substrings should be parsed with the fine-grained PCFG.

Coarse to fine reranking with exponential models

- $Z_G(w)$ is still hard to compute \Rightarrow make $\Psi(w)$ even smaller!
- Set $\Psi(w)$ = the 50-best parses produced by Charniak parser
- Exponential model is trained using MCLE to pick out best parse from Charniak's 50-best parses

Features for ranking parses

- Features can be any real-valued function of parse trees
- In these experiments the features come in two kinds:
 - The logarithm of the tree's probability estimated by the Charniak parser
 - The number of times a particular configuration appears in the parse
- Which ones improve parsing accuracy the most? (can you guess?)

Experimental setup

- Feature tuning experiments done using Collins' split: sections 2-19 as train, 20-21 as dev and 22 as test
- $\Psi(w)$ computed using Charniak 50-best parser
- Features which vary on less than 5 sentences pruned
- Optimization performed using LMVM optimizer from Petsc/TAO optimization package
- Regularizer constant *c* adjusted to maximize f-score on dev

f-score vs. *n*-best beam size

- F-score of Charniak's most probable parse = 0.896
- Oracle f-score (f-score of best parse in beam) of Charniak's 50-best parses = 0.965 (66% redn)

Rank of best parse

- Charniak parser's most likely parse is the best parse 41% of the time
- Reranker picks Charniak parser's most likely parse 58% of the time

Lexicalized and parent-annotated rules

- Rule features largely replicate features already in generative parser
- A typical Rule feature might be (PP IN NP)

Functional and lexical heads

- There are at least two sensible notions of head (c.f., Grimshaw)
 - Functional heads: determiners of NPs, auxiliary verbs of VPs, etc.
 - *Lexical heads:* rightmost Ns of NPs, main verbs in VPs, etc.
- In a log-linear model, it is easy to use both!

n-gram rule features generalize rules

- Breaks up long treebank constituents into shorter (phrase-like?) chunks
- Also includes *relationship to head* (e.g., adjacent? left or right?)

Word and WProj features

- A Word feature is a word plus *n* of its parents (c.f., Klein and Manning's non-lexicalized PCFG)
- A WProj feature is a word plus all of its (maximal projection) parents, up to its governor's maximal projection

Rightmost branch bias

- The RightBranch feature's value is the number of nodes on the right-most branch (ignoring punctuation) (c.f., Charniak 00)
- Reflects the tendancy toward right branching in English
- Only 2 different features, but very useful in final model!

Constituent Heavyness and location

• Heavyness measures the constituent's category, its (binned) size and (binned) closeness to the end of the sentence

Coordination parallelism

• A CoPar feature indicates the depth to which adjacent conjuncts are parallel

Tree *n*-gram

- A tree *n*-gram feature is a tree fragment that connect sequences of adjacent *n* words, for *n* = 2, 3, 4 (c.f. Bod's DOP models)
- lexicalized and non-lexicalized variants

Edges and WordEdges

 A Neighbours feature indicates the node's category, its binned length and *j* left and *k* right lexical items and/or POS tags for *j*, *k* ≤ 2

> 5 words

Adding one feature class to baseline parser

Removing one feature class from reranker

Feature selection is hard

- Greedy feature selection using *averaged perceptron* optimizing f-score on sec 20–21
- All models also evaluated on section 24

Results on all training data

- Features must vary on parses of at least 5 sentences in training data
- In this experiment, 1,333,863 features
- Exponential model trained on sections 2-21
- Gaussian regularization p = 2, constant selected to optimize f-score on section 22
- On section 23: *recall* = 91.0, *precision* = 91.8, *f*-score = 91.4
- Available from www.cog.brown.edu

Outline

Introduction

Non-local dependencies and the PCFG MLE

Generative statistical parsers

Exponential (a.k.a. Maximum Entropy) parsing models

Coarse to fine reranking

Self-training of the reranking parser

Sample parser errors

Self-training for reranking parsing

- *Improves performance* from 91.3 to **92.1 f-score**
- Self-training without the reranker does not improve performance
- Retraining the reranker on new first-stage model does not further improve performance
- Would reparsing the NTC with improved parser further improve performance?

First-stage oracle scores

Model	1-best	10-best	50-best
Baseline	89.0	94.0	95.9
WSJ \times 1 + 250k	89.8	94.6	96.2
WSJ \times 5 + 1,750k	90.4	94.8	96.4

- Self-training improves first-stage generative parser's oracle scores
- First-stage parser also became more decisive: mean of log₂(P(1-best) / P(50th-best)) increased from 11.959 for the baseline parser to 14.104 for self-trained parser

Which sentences improve?

Self-trained WSJ parser on Brown

Sentences added	Parser	WSJ-reranker
Baseline Brown	86.4	87.4
Baseline WSJ	83.9	85.8
WSJ+50k	84.8	86.6
WSJ+250k	85.7	87.2
WSJ+1,000k	86.2	87.3
WSJ+2,500k	86.4	87.7

• Adding NTC data greatly improves performance on Brown corpus (to a lesser extent on Switchboard)

Self-training vs in-domain training

First-stage	First stage alone	WSJ-reranker	Brown-reranker
WSJ	82.9	85.2	85.2
WSJ+NTC	87.1	87.8	87.9
Brown	86.7	88.2	88.4

- Both reranking and self-training are surprisingly domain-independent
- Self-trained NTC parser with WSJ reranker is almost as good as a parser/reranker completely trained on Brown (!)

Summary and conclusions

- PCFG based parsers are easy to estimate, but sensitive to unmodeled dependencies
- Exponential models are difficult to estimate, but resilient to unmodeled dependencies
- Coarse to fine reranking combines both approaches
- (Re)ranking parsers can work with just about any features
- The details of linguistic representations don't matter so long as they are rich enough to compute your features from
- Self-training works with reranking parsers (why?)
- Both reranking and self-training is (surprisingly) domain-independent

Outline

Introduction

Non-local dependencies and the PCFG MLE

Generative statistical parsers

Exponential (a.k.a. Maximum Entropy) parsing models

Coarse to fine reranking

Self-training of the reranking parser

Sample parser errors

Sample parser errors

68 / 70

