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Preview of natural language parsing

• Non-local dependencies cause PCFG Maximum
Likelihood Estimator (MLE) to produce sub-optimal
grammars

• State-splitting or decorating with features can make
non-local dependencies local

• Exponential (a.k.a. Maximum Entropy) models aren’t as
adversely affected by non-local dependencies as PCFGs

• But MLE seems difficult to compute ⇒ Maximum
Conditional Likelihood Estimation (MCLE)

• MCLE also seems better suited to parsing tasks if PCFG
doesn’t accurately describe distribution of strings

• Coarse-to-fine reranking combines PCFG and exponential
models to produce the most accurate parsers we have
today
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• The Penn treebank contains hand-annotated parse trees for
∼ 50, 000 sentences

• Treebanks also exist for the Brown corpus, the Switchboard
corpus (spontaneous telephone conversations) and
Chinese and Arabic corpora
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Estimating a grammar from a treebank

• Maximum likelihood principle: Choose the grammar and rule
probabilities that make the trees in the corpus as likely as
possible

I read the rules off the trees
I for PCFGs, set rule probabilities to the relative frequency of

each rule in the treebank

P(VP → V NP) =
Number of times VP → V NP occurs

Number of times VP occurs
• If the language is generated by a PCFG and the treebank trees

are its derivation trees, the estimated grammar converges to the
true grammar.
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Estimating PCFGs from visible data
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Non-local dependencies and PCFG MLE
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Dividing by partition function Z
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Other values do better!
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Make dependencies local – GPSG-style

rule count rel freq
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Generative statistical parsers

• Splitting node labels (a.k.a. decorating the tree with
features) enables PCFG to capture non-local dependencies

• Modern generative statistical parsers track around 7
different non-local dependencies

• These dependencies are encoded as “features” on nodes
• Most combinations of features are not observed in training

data, but will occur in new sentences
⇒ smoothing is essential!
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“Head to head” dependencies
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• Lexicalization captures syntactic and semantic
dependencies

• Lexicalized structural preferences may be most important
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Generative language model (Charniak 2001)
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Summary so far

• Maximum likelihood is a good way of estimating a
grammar

• Maximum likelihood estimation of a PCFG from a
treebank is easy, and works well if the trees are accurate

• But real language has many more dependencies than
treebank grammar describes

⇒ relative frequency estimator not MLE
I Make non-local dependencies local by splitting categories

⇒ Astronomical number of possible categories
• Find some way of accurately estimating models in the

presence of unmodeled dependencies
⇒ exponential models

22 / 70



Outline

Introduction

Non-local dependencies and the PCFG MLE

Generative statistical parsers

Exponential (a.k.a. Maximum Entropy) parsing models

Coarse to fine reranking

Self-training of the reranking parser

Sample parser errors

23 / 70



Exponential models
Exponential models are defined in terms of features, where a
feature is any real-valued function on ΨG.
Let f1, . . . , fm be features, and λ1, . . . , λm be real-valued feature
weights. An exponential model has the form:

Pλ(ψ) =
Wλ(ψ)

Zλ

Wλ(ψ) = exp
m
∑
j=1

λj f j(ψ)

Zλ = ∑
ψ′∈ΨG

Wλ(ψ′)

Wλ(ψ) is the weight (unnormalized probability) of parse ψ.
Zλ is called the partition function.
Exponential models are also known as Gibbs models, log-linear
models and Maximum Entropy models.
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PCFGs are exponential models
Ψ = set of all trees generated by PCFG G
f j(ψ) = number of times the jth rule is used in ψ

p(rj) = probability of jth rule in G
Set weight λj = log p(rj)

f



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NP VP

rice grows


 = [ 1︸︷︷︸

S→NP VP

, 1︸︷︷︸
NP→rice

, 0︸︷︷︸
NP→bananas

, 1︸︷︷︸
VP→grows

, 0︸︷︷︸
VP→grow

]

P(ψ) =
m
∏
j=1

p(rj)
f j(ψ) =

m
∏
j=1

(exp λj)
f j(ψ) = exp

m
∑
j=1

λj f j(ψ)

So a PCFG is just an exponential model with Zλ = 1.
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Advantages of exponential models

• Exponential models are very flexible . . .
• Features f can be any function of parses . . .

I whether a particular structure occurs in a parse
I conjunctions of prosodic and syntactic structure

• Parses ψ need not be trees, but can be anything at all
I Feature structures (LFG, HPSG)

• Exponential models are related to other popular models
I Harmony theory and optimality theory
I They are also called Maximum Entropy models and log-linear

models
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Modeling dependencies

• It’s usually difficult to design a PCFG model that captures
a particular set of dependencies

I probability of the tree must be broken down into a product
of conditional probability distributions

I non-local dependencies must be expressed in terms of
GPSG-style feature passing

• It’s easy to make exponential models sensitive to new
dependencies

I add a new feature functions to existing feature functions
I figuring out what the right dependencies are is hard, but

incorporating them into an exponential model is easy
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MLE of exponential models from visible data

Visible training data: Parses Ψ = ψ1, . . . , ψn

log L(λ) =
n
∑
i=1

log Pλ(ψi)

=
n
∑
i=1

(
log Wλ(ψi) − log ∑

ψ∈ΨG

Wλ(ψ)

)

∂ log L(λ)

∂λj
=

n
∑
i=1

(
f j(ψi) − Eλ[ f j ]

)

So the likelihood is maximized when the empirical frequency
of each feature equals its expected frequency.
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Maximizing likelihood of visible data is hard!

ΨG

ψi

Maximizing likelihood requires summation over all of ΨG,
even with fully visible data!
Maximizing likelihood contrasts the training data trees Ψ with
ΨG; i.e., select λ to maximize
∑

n
i=1(log Wλ(ψi) − log ∑ψ∈ΨG Wλ(ψ)).

But ΨG is the set of all parses of all sentences!
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Estimation by maximizing conditional likelihood

Maximize the conditional likelihood of the correct parses Ψ given
their yield w.

log L(λ) =
n
∑
i=1

log Pλ(ψi|wi)

=
n
∑
i=1


log Wλ(ψi) − log ∑

ψ∈ΨG(wi)

Wλ(ψ)




∂ log L(λ)

∂λj
=

n
∑
i=1

(
f j(ψi) − Eλ[ f j |wi]

)

So conditional likelihood is maximized when the empirical
frequency of each feature equals its expected frequency
conditioned on the yields.
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Maximizing conditional likelihood is easier

ΨG

ΨG(wi)
ψi

Pseudo-likelihood is consistent
for the conditional distribution
Maximizing conditional likeli-
hood requires summing over
ΨG(wi), i = 1, . . . , n (obtained by
parsing).

Conditional likelihood contrasts each element of training data
ψi with the parses of wi; i.e., adjust λ to maximize
∑

n
i=1(log Wλ(ψi) − log ∑ψ′∈ΨG(wi) Wλ(ψ′)).
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Conditional likelihood is better for parsing
Parsing exploits P(ψ|w), which MCL optimizes.
If the grammar does not generate strings accurately, ML and
MCL can be quite different!
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. . . × 2/105 × . . . . . . × 1/7 × . . .
. . . × 2/7 × . . . . . . × 1/7 × . . .

Rule count rel freq
VP → V 100 100/105 4/7
VP → V NP 3 3/105 1/7
VP → VP PP 2 2/105 2/7
NP → N 6 6/7 6/7
NP → NP PP 1 1/7 1/7
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Conditional ML estimation

wi f (ψi) { f (ψ) : ψ ∈ ΨG(wi), ψ 6= ψi}
sentence 1 (1, 3, 2) (2, 2, 3) (3, 1, 5) (2, 6, 3)
sentence 2 (7, 2, 1) (2, 5, 5)
sentence 3 (2, 4, 2) (1, 1, 7) (7, 2, 1)

. . . . . . . . .
• Parser designer specifies feature functions f = ( f1, . . . , fm)

• A parser produces trees Ψ(w) for each sentence
w ∈ w1, . . . , wn

• Treebank tells us correct tree ψi ∈ Ψ(wi) for sentence wi
• Feature functions f apply to each tree ψ ∈ ΨG(w),

producing feature values f (ψ) = ( f1(ψ), . . . , fm(ψ))

• MCLE estimates feature weights λ̂ using a gradient-based
numerical optimizer
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Regularization
• With a large number of features, exponential models can

over-fit the training data
• Regularization: add bias term to ensure λ̂ is finite and

small
• In following experiments, regularizer is a polynomial

penalty term

λ̂ = argmax
λ

log
n
∑
i=1

Pλ(ψi|wi)−c
m
∑
j=1

|λj |
p

= argmax
w

n
∑
i=1

(
m
∑
j=1

λj f j(ψi) − log Zλ(wi)

)
−c

m
∑
j=1

|λj |
p

• p = 2 gives a Gaussian prior.
• We maximize this expression using numerical optimization

(Limited Memory Variable Metric)
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Conditional vs joint estimation

In this slide, let ψ be a parse tree without the terminal string w

P(ψ, w) = P(ψ|w)P(w)

• ML optimizes probability of training trees ψ and strings w
• MCLE maximizes probability of trees given strings

I Conditional estimation uses less information from the data
I learns nothing from distribution of strings P(w)
I learns nothing from unambiguous sentences (!)

• Joint estimation should be better (lower variance) if your
model correctly relates P(ψ|w) and P(w)

• Conditional estimation should be better if your model
incorrectly relates P(ψ|w) and P(w)
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Linguistic representations and features

• Probability of a parse ψ is completely determined by its
feature vector ( f1(ψ), . . . , fm(ψ))

• The actual linguistic representation of parse ψ is irrelevant
as long as it is rich enough to calculate features f (ψ)

• Feature functions define the kinds of generalizations that
the learner can extract

I parses with the same feature values will be assigned the
same probability

I the choice of feature functions is as much a linguistic
decision than the choice of representations

• Features can be arbitrary functions
I the linguistic properties they encode need not be directly

represented in the parse
I very different from PCFGs, where the tree label and shape

determines the generalizations extracted
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Coarse to fine parsing

• Parsing with a grammar with a lot of features (PCFG
nonterminals) is slow, even using the dynamic
programming algorithms

• Coarse to fine parsing uses a sequence of grammars. The
features of the coarse-grained grammars are equivalence
classes of the fined-grained features.

• The parses produced by the coarse-grained grammars
constrain the search with the fine-grained grammar.

• The Charniak generative parser uses a coarse-grained
PCFG to identify which substrings should be parsed with
the fine-grained PCFG.
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Coarse to fine reranking with exponential models

• ZG(w) is still hard to compute ⇒ make Ψ(w) even smaller!
• Set Ψ(w) = the 50-best parses produced by Charniak

parser
• Exponential model is trained using MCLE to pick out best

parse from Charniak’s 50-best parses

λ · f (ψ50)

w

. . .

. . .

. . .

f (ψ1)

ψ1 ψ50

f (ψ50)

Charniak parser

Parse scores

Features

Trees

Sentence

λ · f (ψ1)
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Features for ranking parses

• Features can be any real-valued function of parse trees
• In these experiments the features come in two kinds:

I The logarithm of the tree’s probability estimated by the
Charniak parser

I The number of times a particular configuration appears in
the parse

• Which ones improve parsing accuracy the most? (can you
guess?)
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Experimental setup

• Feature tuning experiments done using Collins’ split:
sections 2-19 as train, 20-21 as dev and 22 as test

• Ψ(w) computed using Charniak 50-best parser
• Features which vary on less than 5 sentences pruned
• Optimization performed using LMVM optimizer from

Petsc/TAO optimization package
• Regularizer constant c adjusted to maximize f-score on dev
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f -score vs. n-best beam size

Beam size
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• F-score of Charniak’s most probable parse = 0.896
• Oracle f-score (f-score of best parse in beam) of Charniak’s

50-best parses = 0.965 (66% redn)
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Rank of best parse

Rank of best parse in n-best list
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• Charniak parser’s most likely parse is the best parse 41%
of the time

• Reranker picks Charniak parser’s most likely parse 58% of
the time
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Lexicalized and parent-annotated rules

• Rule features largely replicate features already in
generative parser

• A typical Rule feature might be (PP IN NP)
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Functional and lexical heads
• There are at least two sensible notions of head (c.f.,

Grimshaw)
I Functional heads: determiners of NPs, auxilary verbs of VPs,

etc.
I Lexical heads: rightmost Ns of NPs, main verbs in VPs, etc.

• In a log-linear model, it is easy to use both!
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n-gram rule features generalize rules

• Breaks up long treebank constituents into shorter (phrase-like?)
chunks

• Also includes relationship to head (e.g., adjacent? left or right?)
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Word and WProj features

• A Word feature is a word plus n of its parents (c.f., Klein
and Manning’s non-lexicalized PCFG)

• A WProj feature is a word plus all of its (maximal
projection) parents, up to its governor’s maximal
projection
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Rightmost branch bias

• The RightBranch feature’s value is the number of nodes on the
right-most branch (ignoring punctuation) (c.f., Charniak 00)

• Reflects the tendancy toward right branching in English
• Only 2 different features, but very useful in final model!
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Constituent Heavyness and location

• Heavyness measures the constituent’s category, its
(binned) size and (binned) closeness to the end of the
sentence
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Coordination parallelism

• A CoPar feature indicates the depth to which adjacent
conjuncts are parallel
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Tree n-gram

• A tree n-gram feature is a tree fragment that connect
sequences of adjacent n words, for n = 2, 3, 4 (c.f. Bod’s
DOP models)

• lexicalized and non-lexicalized variants
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Edges and WordEdges

• A Neighbours feature indicates the node’s category, its
binned length and j left and k right lexical items and/or
POS tags for j, k ≤ 2
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Adding one feature class to baseline parser
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Removing one feature class from reranker
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Feature selection is hard

Averaged perceptron feature selection

f-score on sections 20-21

f-s
co
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on
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n

24

0.9110.910.9090.9080.9070.9060.9050.9040.9030.9020.901
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0.9

0.898

0.896
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0.892

• Greedy feature selection using averaged perceptron optimizing
f-score on sec 20–21

• All models also evaluated on section 24
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Results on all training data

• Features must vary on parses of at least 5 sentences in
training data

• In this experiment, 1,333,863 features
• Exponential model trained on sections 2-21
• Gaussian regularization p = 2, constant selected to

optimize f-score on section 22
• On section 23: recall = 91.0, precision = 91.8, f-score = 91.4
• Available from www.cog.brown.edu

56 / 70



Outline

Introduction

Non-local dependencies and the PCFG MLE

Generative statistical parsers

Exponential (a.k.a. Maximum Entropy) parsing models

Coarse to fine reranking

Self-training of the reranking parser

Sample parser errors

57 / 70



Self-training for reranking parsing

Generative parser

Parse reranker

NTC text corpus

New generative parser model

Parsed NTC corpus Penn treebank x 5

• Improves performance from 91.3 to 92.1 f-score
• Self-training without the reranker does not improve

performance
• Retraining the reranker on new first-stage model does not

further improve performance
• Would reparsing the NTC with improved parser further

improve performance?
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First-stage oracle scores

Model 1-best 10-best 50-best
Baseline 89.0 94.0 95.9

WSJ×1 + 250k 89.8 94.6 96.2
WSJ×5 + 1,750k 90.4 94.8 96.4

• Self-training improves first-stage generative parser’s
oracle scores

• First-stage parser also became more decisive: mean of
log2(P(1-best) / P(50th-best)) increased from 11.959 for the
baseline parser to 14.104 for self-trained parser
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Which sentences improve?
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Self-trained WSJ parser on Brown

Sentences added Parser WSJ-reranker
Baseline Brown 86.4 87.4
Baseline WSJ 83.9 85.8
WSJ+50k 84.8 86.6
WSJ+250k 85.7 87.2
WSJ+1,000k 86.2 87.3
WSJ+2,500k 86.4 87.7

• Adding NTC data greatly improves performance on
Brown corpus (to a lesser extent on Switchboard)
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Self-training vs in-domain training

First-stage First stage alone WSJ-reranker Brown-reranker
WSJ 82.9 85.2 85.2

WSJ+NTC 87.1 87.8 87.9
Brown 86.7 88.2 88.4

• Both reranking and self-training are surprisingly
domain-independent

• Self-trained NTC parser with WSJ reranker is almost as
good as a parser/reranker completely trained on Brown (!)
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Summary and conclusions

• PCFG based parsers are easy to estimate, but sensitive to
unmodeled dependencies

• Exponential models are difficult to estimate, but resilient to
unmodeled dependencies

• Coarse to fine reranking combines both approaches
• (Re)ranking parsers can work with just about any features
• The details of linguistic representations don’t matter so

long as they are rich enough to compute your features from
• Self-training works with reranking parsers (why?)
• Both reranking and self-training is (surprisingly)

domain-independent
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Sample parser errors
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