
Statistical models
for natural language parsing

Mark Johnson

Microsoft Research / Brown University

July 2007

1 / 70

Outline

Introduction

Non-local dependencies and the PCFG MLE

Generative statistical parsers

Exponential (a.k.a. Maximum Entropy) parsing models

Coarse to fine reranking

Self-training of the reranking parser

Sample parser errors

2 / 70

Preview of natural language parsing

• Non-local dependencies cause PCFG Maximum
Likelihood Estimator (MLE) to produce sub-optimal
grammars

• State-splitting or decorating with features can make
non-local dependencies local

• Exponential (a.k.a. Maximum Entropy) models aren’t as
adversely affected by non-local dependencies as PCFGs

• But MLE seems difficult to compute ⇒ Maximum
Conditional Likelihood Estimation (MCLE)

• MCLE also seems better suited to parsing tasks if PCFG
doesn’t accurately describe distribution of strings

• Coarse-to-fine reranking combines PCFG and exponential
models to produce the most accurate parsers we have
today

3 / 70

Treebank corpora

ROOT

S

NP-SBJ

NNP

BELL

NNP

INDUSTRIES

NNP

Inc.

VP

VBD

increased

NP

PRP$

its

NN

quarterly

PP-DIR

TO

to

NP

CD

10

NNS

cents

PP-DIR

IN

from

NP

NP

CD

seven

NNS

cents

NP-ADV

DT

a

NN

share

.

.

• The Penn treebank contains hand-annotated parse trees for
∼ 50, 000 sentences

• Treebanks also exist for the Brown corpus, the Switchboard
corpus (spontaneous telephone conversations) and
Chinese and Arabic corpora

4 / 70

Outline

Introduction

Non-local dependencies and the PCFG MLE

Generative statistical parsers

Exponential (a.k.a. Maximum Entropy) parsing models

Coarse to fine reranking

Self-training of the reranking parser

Sample parser errors

5 / 70

Estimating a grammar from a treebank

• Maximum likelihood principle: Choose the grammar and rule
probabilities that make the trees in the corpus as likely as
possible

I read the rules off the trees
I for PCFGs, set rule probabilities to the relative frequency of

each rule in the treebank

P(VP → V NP) =
Number of times VP → V NP occurs

Number of times VP occurs
• If the language is generated by a PCFG and the treebank trees

are its derivation trees, the estimated grammar converges to the
true grammar.

6 / 70

Estimating PCFGs from visible data

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

corn grows

Rule Count Rel Freq
S → NP VP 3 1
NP → rice 2 2/3
NP → corn 1 1/3
VP → grows 3 1

P




S

NP VP

rice grows


 = 2/3

P




S

NP VP

corn grows


 = 1/3

7 / 70

Non-local dependencies and PCFG MLE
S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

bananas grow

Rule Count Rel Freq
S → NP VP 3 1
NP → rice 2 2/3
NP → bananas 1 1/3
VP → grows 2 2/3
VP → grow 1 1/3

P




S

NP VP

rice grows


 = 4/9

P




S

NP VP

bananas grow


 = 1/9

partition function Z = 5/9
8 / 70

Dividing by partition function Z
S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

bananas grow

Rule Count Rel Freq
S → NP VP 3 1
NP → rice 2 2/3
NP → bananas 1 1/3
VP → grows 2 2/3
VP → grow 1 1/3

P




S

NP VP

rice grows


 = 4/9 4/5

P




S

NP VP

bananas grow


 = 1/9 1/5

Z = 5/9
9 / 70

Other values do better!
S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

bananas grow

Rule Count p
S → NP VP 3 1
NP → rice 2 2/3
NP → bananas 1 1/3
VP → grows 2 1/2
VP → grow 1 1/2
(Abney 1997)

P




S

NP VP

rice grows


 = 2/6 2/3

P




S

NP VP

bananas grow


 = 1/6 1/3

Z = 3/6

10 / 70

Make dependencies local – GPSG-style

rule count rel freq
S → NP

+singular
VP

+singular 2 2/3

S → NP
+plural

VP
+plural 1 1/3

NP
+singular → rice 2 1

NP
+plural → bananas 1 1

VP
+singular → grows 2 1

VP
+plural → grow 1 1

P




S

NP VP
+singular

rice grows

+singular




= 2/3

P




S

NP VP
+plural +plural

bananas grow




= 1/3

11 / 70

Outline

Introduction

Non-local dependencies and the PCFG MLE

Generative statistical parsers

Exponential (a.k.a. Maximum Entropy) parsing models

Coarse to fine reranking

Self-training of the reranking parser

Sample parser errors

12 / 70

Generative statistical parsers

• Splitting node labels (a.k.a. decorating the tree with
features) enables PCFG to capture non-local dependencies

• Modern generative statistical parsers track around 7
different non-local dependencies

• These dependencies are encoded as “features” on nodes
• Most combinations of features are not observed in training

data, but will occur in new sentences
⇒ smoothing is essential!

13 / 70

“Head to head” dependencies
S

NP

D

the

N

man

PP

P

in

NP

the

N

hat

VP

V

drinks

NP

AP

red

N

wineD
the hat

hatin

inmanthe

man

drinks

drinks

drinks wine

red wine

Rules:

S
drinks →

NP
man

VP
drinks

VP
drinks →

V
drinks

NP
wine

NP
wine →

AP
red

N
wine

. . .

• Lexicalization captures syntactic and semantic
dependencies

• Lexicalized structural preferences may be most important

14 / 70

Generative language model (Charniak 2001)
S

NP
DT
The

NNS
changes

VP
VB

allow NP

.

.

VB
report

NP
NP

NNS
exercises

PP
IN
of

NP
NNS

options

ADVP
RBR
less

RB
often

VP
VP

TO
to

S

NNS
executives

• Predicted node is shown in red
• Conditioning nodes are shown in blue

15 / 70

Generative language model (Charniak 2001)
S

NP
DT
The

NNS
changes

VP
VB

allow NP

.

.

report
NP

NP
NNS

exercises

PP
IN
of

NP
NNS

options

ADVP
RBR
less

RB
often

VP
TO
to

S

NNS
executives

VP
VB

• Predicted node is shown in red
• Conditioning nodes are shown in blue

16 / 70

Generative language model (Charniak 2001)
S

NP
DT
The

NNS
changes

VP
VB

allow NP

.

.

NP
NP

NNS
exercises

PP
IN
of

NP
NNS

options

ADVP
RBR
less

RB
often

VP
TO
to

S

NNS
executives

VP

report
VB

• Predicted node is shown in red
• Conditioning nodes are shown in blue

17 / 70

Generative language model (Charniak 2001)
S

NP
DT
The

NNS
changes

VP
VB

allow NP

.

.

NP
NNS

exercises

PP
IN
of

NP
NNS

options

ADVP
RBR
less

RB
often

VP
TO
to

VP
VB

report
NP

NNS
executives

S

• Predicted node is shown in red
• Conditioning nodes are shown in blue

18 / 70

Generative language model (Charniak 2001)
S

NP
DT
The

NNS
changes

VP
VB

allow NP

.

.

NP

exercises

PP
IN
of

NP
NNS

options

ADVP
RBR
less

RB
often

VP
TO
to

VP
VB

report

NNS
executives

S

NNS

NP

• Predicted node is shown in red
• Conditioning nodes are shown in blue

19 / 70

Generative language model (Charniak 2001)
S

NP
DT
The

NNS
changes

VP
VB

allow NP

.

.

NP PP
IN
of

NP
NNS

options

ADVP
RBR
less

RB
often

VP
TO
to

VP
VB

report

NNS
executives

S

NP

NNS
exercises

• Predicted node is shown in red
• Conditioning nodes are shown in blue

20 / 70

Generative language model (Charniak 2001)
S

NP
DT
The

NNS
changes

VP
VB

allow NP

.

.

RBR
less

RB
often

VP
TO
to

VP
VB

report

NNS
executives

S

NP

exercises
NNS
NP PP

IN NP
NNS

options
of

ADVP

• Predicted node is shown in red
• Conditioning nodes are shown in blue

21 / 70

Summary so far

• Maximum likelihood is a good way of estimating a
grammar

• Maximum likelihood estimation of a PCFG from a
treebank is easy, and works well if the trees are accurate

• But real language has many more dependencies than
treebank grammar describes

⇒ relative frequency estimator not MLE
I Make non-local dependencies local by splitting categories

⇒ Astronomical number of possible categories
• Find some way of accurately estimating models in the

presence of unmodeled dependencies
⇒ exponential models

22 / 70

Outline

Introduction

Non-local dependencies and the PCFG MLE

Generative statistical parsers

Exponential (a.k.a. Maximum Entropy) parsing models

Coarse to fine reranking

Self-training of the reranking parser

Sample parser errors

23 / 70

Exponential models
Exponential models are defined in terms of features, where a
feature is any real-valued function on ΨG.
Let f1, . . . , fm be features, and λ1, . . . , λm be real-valued feature
weights. An exponential model has the form:

Pλ(ψ) =
Wλ(ψ)

Zλ

Wλ(ψ) = exp
m
∑
j=1

λj f j(ψ)

Zλ = ∑
ψ′∈ΨG

Wλ(ψ′)

Wλ(ψ) is the weight (unnormalized probability) of parse ψ.
Zλ is called the partition function.
Exponential models are also known as Gibbs models, log-linear
models and Maximum Entropy models.

24 / 70

PCFGs are exponential models
Ψ = set of all trees generated by PCFG G
f j(ψ) = number of times the jth rule is used in ψ

p(rj) = probability of jth rule in G
Set weight λj = log p(rj)

f




S

NP VP

rice grows


 = [1︸︷︷︸

S→NP VP

, 1︸︷︷︸
NP→rice

, 0︸︷︷︸
NP→bananas

, 1︸︷︷︸
VP→grows

, 0︸︷︷︸
VP→grow

]

P(ψ) =
m
∏
j=1

p(rj)
f j(ψ) =

m
∏
j=1

(exp λj)
f j(ψ) = exp

m
∑
j=1

λj f j(ψ)

So a PCFG is just an exponential model with Zλ = 1.
25 / 70

Advantages of exponential models

• Exponential models are very flexible . . .
• Features f can be any function of parses . . .

I whether a particular structure occurs in a parse
I conjunctions of prosodic and syntactic structure

• Parses ψ need not be trees, but can be anything at all
I Feature structures (LFG, HPSG)

• Exponential models are related to other popular models
I Harmony theory and optimality theory
I They are also called Maximum Entropy models and log-linear

models

26 / 70

Modeling dependencies

• It’s usually difficult to design a PCFG model that captures
a particular set of dependencies

I probability of the tree must be broken down into a product
of conditional probability distributions

I non-local dependencies must be expressed in terms of
GPSG-style feature passing

• It’s easy to make exponential models sensitive to new
dependencies

I add a new feature functions to existing feature functions
I figuring out what the right dependencies are is hard, but

incorporating them into an exponential model is easy

27 / 70

MLE of exponential models from visible data

Visible training data: Parses Ψ = ψ1, . . . , ψn

log L(λ) =
n
∑
i=1

log Pλ(ψi)

=
n
∑
i=1

(
log Wλ(ψi) − log ∑

ψ∈ΨG

Wλ(ψ)

)

∂ log L(λ)

∂λj
=

n
∑
i=1

(
f j(ψi) − Eλ[f j]

)

So the likelihood is maximized when the empirical frequency
of each feature equals its expected frequency.

28 / 70

Maximizing likelihood of visible data is hard!

ΨG

ψi

Maximizing likelihood requires summation over all of ΨG,
even with fully visible data!
Maximizing likelihood contrasts the training data trees Ψ with
ΨG; i.e., select λ to maximize
∑

n
i=1(log Wλ(ψi) − log ∑ψ∈ΨG Wλ(ψ)).

But ΨG is the set of all parses of all sentences!
29 / 70

Estimation by maximizing conditional likelihood

Maximize the conditional likelihood of the correct parses Ψ given
their yield w.

log L(λ) =
n
∑
i=1

log Pλ(ψi|wi)

=
n
∑
i=1


log Wλ(ψi) − log ∑

ψ∈ΨG(wi)

Wλ(ψ)




∂ log L(λ)

∂λj
=

n
∑
i=1

(
f j(ψi) − Eλ[f j |wi]

)

So conditional likelihood is maximized when the empirical
frequency of each feature equals its expected frequency
conditioned on the yields.

30 / 70

Maximizing conditional likelihood is easier

ΨG

ΨG(wi)
ψi

Pseudo-likelihood is consistent
for the conditional distribution
Maximizing conditional likeli-
hood requires summing over
ΨG(wi), i = 1, . . . , n (obtained by
parsing).

Conditional likelihood contrasts each element of training data
ψi with the parses of wi; i.e., adjust λ to maximize
∑

n
i=1(log Wλ(ψi) − log ∑ψ′∈ΨG(wi) Wλ(ψ′)).

31 / 70

Conditional likelihood is better for parsing
Parsing exploits P(ψ|w), which MCL optimizes.
If the grammar does not generate strings accurately, ML and
MCL can be quite different!

100×

VP

V

run 2×

V

see

NP

N

people

P

with

NP

N

telescopes

VP PP

VP

1×

VP

V

see

N

people

P

with

NP

N

telescopes

NP PP

NP

. . . × 2/105 × × 1/7 × . . .
. . . × 2/7 × × 1/7 × . . .

Rule count rel freq
VP → V 100 100/105 4/7
VP → V NP 3 3/105 1/7
VP → VP PP 2 2/105 2/7
NP → N 6 6/7 6/7
NP → NP PP 1 1/7 1/7

32 / 70

Conditional ML estimation

wi f (ψi) { f (ψ) : ψ ∈ ΨG(wi), ψ 6= ψi}
sentence 1 (1, 3, 2) (2, 2, 3) (3, 1, 5) (2, 6, 3)
sentence 2 (7, 2, 1) (2, 5, 5)
sentence 3 (2, 4, 2) (1, 1, 7) (7, 2, 1)

.
• Parser designer specifies feature functions f = (f1, . . . , fm)

• A parser produces trees Ψ(w) for each sentence
w ∈ w1, . . . , wn

• Treebank tells us correct tree ψi ∈ Ψ(wi) for sentence wi
• Feature functions f apply to each tree ψ ∈ ΨG(w),

producing feature values f (ψ) = (f1(ψ), . . . , fm(ψ))

• MCLE estimates feature weights λ̂ using a gradient-based
numerical optimizer

33 / 70

Regularization
• With a large number of features, exponential models can

over-fit the training data
• Regularization: add bias term to ensure λ̂ is finite and

small
• In following experiments, regularizer is a polynomial

penalty term

λ̂ = argmax
λ

log
n
∑
i=1

Pλ(ψi|wi)−c
m
∑
j=1

|λj |
p

= argmax
w

n
∑
i=1

(
m
∑
j=1

λj f j(ψi) − log Zλ(wi)

)
−c

m
∑
j=1

|λj |
p

• p = 2 gives a Gaussian prior.
• We maximize this expression using numerical optimization

(Limited Memory Variable Metric)
34 / 70

Conditional vs joint estimation

In this slide, let ψ be a parse tree without the terminal string w

P(ψ, w) = P(ψ|w)P(w)

• ML optimizes probability of training trees ψ and strings w
• MCLE maximizes probability of trees given strings

I Conditional estimation uses less information from the data
I learns nothing from distribution of strings P(w)
I learns nothing from unambiguous sentences (!)

• Joint estimation should be better (lower variance) if your
model correctly relates P(ψ|w) and P(w)

• Conditional estimation should be better if your model
incorrectly relates P(ψ|w) and P(w)

35 / 70

Linguistic representations and features

• Probability of a parse ψ is completely determined by its
feature vector (f1(ψ), . . . , fm(ψ))

• The actual linguistic representation of parse ψ is irrelevant
as long as it is rich enough to calculate features f (ψ)

• Feature functions define the kinds of generalizations that
the learner can extract

I parses with the same feature values will be assigned the
same probability

I the choice of feature functions is as much a linguistic
decision than the choice of representations

• Features can be arbitrary functions
I the linguistic properties they encode need not be directly

represented in the parse
I very different from PCFGs, where the tree label and shape

determines the generalizations extracted

36 / 70

Outline

Introduction

Non-local dependencies and the PCFG MLE

Generative statistical parsers

Exponential (a.k.a. Maximum Entropy) parsing models

Coarse to fine reranking

Self-training of the reranking parser

Sample parser errors

37 / 70

Coarse to fine parsing

• Parsing with a grammar with a lot of features (PCFG
nonterminals) is slow, even using the dynamic
programming algorithms

• Coarse to fine parsing uses a sequence of grammars. The
features of the coarse-grained grammars are equivalence
classes of the fined-grained features.

• The parses produced by the coarse-grained grammars
constrain the search with the fine-grained grammar.

• The Charniak generative parser uses a coarse-grained
PCFG to identify which substrings should be parsed with
the fine-grained PCFG.

38 / 70

Coarse to fine reranking with exponential models

• ZG(w) is still hard to compute ⇒ make Ψ(w) even smaller!
• Set Ψ(w) = the 50-best parses produced by Charniak

parser
• Exponential model is trained using MCLE to pick out best

parse from Charniak’s 50-best parses

λ · f (ψ50)

w

. . .

. . .

. . .

f (ψ1)

ψ1 ψ50

f (ψ50)

Charniak parser

Parse scores

Features

Trees

Sentence

λ · f (ψ1)

39 / 70

Features for ranking parses

• Features can be any real-valued function of parse trees
• In these experiments the features come in two kinds:

I The logarithm of the tree’s probability estimated by the
Charniak parser

I The number of times a particular configuration appears in
the parse

• Which ones improve parsing accuracy the most? (can you
guess?)

40 / 70

Experimental setup

• Feature tuning experiments done using Collins’ split:
sections 2-19 as train, 20-21 as dev and 22 as test

• Ψ(w) computed using Charniak 50-best parser
• Features which vary on less than 5 sentences pruned
• Optimization performed using LMVM optimizer from

Petsc/TAO optimization package
• Regularizer constant c adjusted to maximize f-score on dev

41 / 70

f -score vs. n-best beam size

Beam size

O
ra

cl
e

f-
sc

or
e

50403020100

0.98

0.96

0.94

0.92

0.9

• F-score of Charniak’s most probable parse = 0.896
• Oracle f-score (f-score of best parse in beam) of Charniak’s

50-best parses = 0.965 (66% redn)
42 / 70

Rank of best parse

Rank of best parse in n-best list

Fr
ac

tio
n

of
se

nt
en

ce
s

50403020100

0.5

0.4

0.3

0.2

0.1

0

• Charniak parser’s most likely parse is the best parse 41%
of the time

• Reranker picks Charniak parser’s most likely parse 58% of
the time

43 / 70

Lexicalized and parent-annotated rules

• Rule features largely replicate features already in
generative parser

• A typical Rule feature might be (PP IN NP)

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

Heads

Ancestor
Context

Rule

44 / 70

Functional and lexical heads
• There are at least two sensible notions of head (c.f.,

Grimshaw)
I Functional heads: determiners of NPs, auxilary verbs of VPs,

etc.
I Lexical heads: rightmost Ns of NPs, main verbs in VPs, etc.

• In a log-linear model, it is easy to use both!

S

DT

A

NN

record

NN

date

VP

VBZ

has

RB

n’t

VP

VBN

been

VP

VBN

set

.

.

NP

functional
functional

lexical

45 / 70

n-gram rule features generalize rules

• Breaks up long treebank constituents into shorter (phrase-like?)
chunks

• Also includes relationship to head (e.g., adjacent? left or right?)

ROOT

S

NP

DT

The

NN

clash

VP

AUX

is

NP

NP

DT

a

NN

sign

PP

IN

of

NP

NP

DT

a

JJ

new

NN

toughness

CC

and

NN

divisiveness

PP

IN

in

NP

NP

NNP

Japan

POS

’s

JJ

once-cozy

JJ

financial

NNS

circles

.

.

Left of head, non-adjacent to head

46 / 70

Word and WProj features

• A Word feature is a word plus n of its parents (c.f., Klein
and Manning’s non-lexicalized PCFG)

• A WProj feature is a word plus all of its (maximal
projection) parents, up to its governor’s maximal
projection

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

47 / 70

Rightmost branch bias

• The RightBranch feature’s value is the number of nodes on the
right-most branch (ignoring punctuation) (c.f., Charniak 00)

• Reflects the tendancy toward right branching in English
• Only 2 different features, but very useful in final model!

ROOT

WDT

That went

over

DT

the

JJ

permissible

NN

line

IN

for

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.PP

VP

S

NP

PP

NP

NP

VBD

IN

NP

ADJP

48 / 70

Constituent Heavyness and location

• Heavyness measures the constituent’s category, its
(binned) size and (binned) closeness to the end of the
sentence

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

> 5 words =1 punctuation

49 / 70

Coordination parallelism

• A CoPar feature indicates the depth to which adjacent
conjuncts are parallel

ROOT

S

NP

PRP

They

VP

VP

VBD

were

VP

VBN

consulted

PP

IN

in

NP

NN

advance

CC

and

VP

VDB

were

VP

VBN

surprised

PP

IN

at

NP

NP

DT

the

NN

action

VP

VBN

taken

.

.

Isomorphic trees to depth 4

50 / 70

Tree n-gram

• A tree n-gram feature is a tree fragment that connect
sequences of adjacent n words, for n = 2, 3, 4 (c.f. Bod’s
DOP models)

• lexicalized and non-lexicalized variants

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

51 / 70

Edges and WordEdges

• A Neighbours feature indicates the node’s category, its
binned length and j left and k right lexical items and/or
POS tags for j, k ≤ 2

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

> 5 words

52 / 70

Adding one feature class to baseline parser

��� ���

�

�� ���

�� ���

�� ���

�� ���

�� ��

��������	
��

�������	

53 / 70

Removing one feature class from reranker

��� ���

��� ���

�

�� ���

�� ���

�� ���

�� ���

�� ���

�� ��	

��������	
��

�������	

54 / 70

Feature selection is hard

Averaged perceptron feature selection

f-score on sections 20-21

f-s
co

re
on

se
ct

io
n

24

0.9110.910.9090.9080.9070.9060.9050.9040.9030.9020.901

0.908

0.906

0.904

0.902

0.9

0.898

0.896

0.894

0.892

• Greedy feature selection using averaged perceptron optimizing
f-score on sec 20–21

• All models also evaluated on section 24
55 / 70

Results on all training data

• Features must vary on parses of at least 5 sentences in
training data

• In this experiment, 1,333,863 features
• Exponential model trained on sections 2-21
• Gaussian regularization p = 2, constant selected to

optimize f-score on section 22
• On section 23: recall = 91.0, precision = 91.8, f-score = 91.4
• Available from www.cog.brown.edu

56 / 70

Outline

Introduction

Non-local dependencies and the PCFG MLE

Generative statistical parsers

Exponential (a.k.a. Maximum Entropy) parsing models

Coarse to fine reranking

Self-training of the reranking parser

Sample parser errors

57 / 70

Self-training for reranking parsing

Generative parser

Parse reranker

NTC text corpus

New generative parser model

Parsed NTC corpus Penn treebank x 5

• Improves performance from 91.3 to 92.1 f-score
• Self-training without the reranker does not improve

performance
• Retraining the reranker on new first-stage model does not

further improve performance
• Would reparsing the NTC with improved parser further

improve performance?
58 / 70

First-stage oracle scores

Model 1-best 10-best 50-best
Baseline 89.0 94.0 95.9

WSJ×1 + 250k 89.8 94.6 96.2
WSJ×5 + 1,750k 90.4 94.8 96.4

• Self-training improves first-stage generative parser’s
oracle scores

• First-stage parser also became more decisive: mean of
log2(P(1-best) / P(50th-best)) increased from 11.959 for the
baseline parser to 14.104 for self-trained parser

59 / 70

Which sentences improve?

0 1 2 3 4 5

0
50

0
10

00
15

00
20

00

Unknown words

N
um

be
r o

f s
en

te
nc

es
Better
No change
Worse

0 2 4 6 8 10

20
0

40
0

60
0

Number of INs

N
um

be
r o

f s
en

te
nc

es

Better
No change
Worse

0 1 2 3 4 5

0
50

0
10

00
15

00
20

00

Number of CCs

N
um

be
r o

f s
en

te
nc

es

Better
No change
Worse

0 10 20 30 40 50 60

20
40

60
80

10
0

Sentence length

N
um

be
r o

f s
en

te
nc

es
 (s

m
oo

th
ed

)

Better
No change
Worse

60 / 70

Self-trained WSJ parser on Brown

Sentences added Parser WSJ-reranker
Baseline Brown 86.4 87.4
Baseline WSJ 83.9 85.8
WSJ+50k 84.8 86.6
WSJ+250k 85.7 87.2
WSJ+1,000k 86.2 87.3
WSJ+2,500k 86.4 87.7

• Adding NTC data greatly improves performance on
Brown corpus (to a lesser extent on Switchboard)

61 / 70

Self-training vs in-domain training

First-stage First stage alone WSJ-reranker Brown-reranker
WSJ 82.9 85.2 85.2

WSJ+NTC 87.1 87.8 87.9
Brown 86.7 88.2 88.4

• Both reranking and self-training are surprisingly
domain-independent

• Self-trained NTC parser with WSJ reranker is almost as
good as a parser/reranker completely trained on Brown (!)

62 / 70

Summary and conclusions

• PCFG based parsers are easy to estimate, but sensitive to
unmodeled dependencies

• Exponential models are difficult to estimate, but resilient to
unmodeled dependencies

• Coarse to fine reranking combines both approaches
• (Re)ranking parsers can work with just about any features
• The details of linguistic representations don’t matter so

long as they are rich enough to compute your features from
• Self-training works with reranking parsers (why?)
• Both reranking and self-training is (surprisingly)

domain-independent

63 / 70

Outline

Introduction

Non-local dependencies and the PCFG MLE

Generative statistical parsers

Exponential (a.k.a. Maximum Entropy) parsing models

Coarse to fine reranking

Self-training of the reranking parser

Sample parser errors

64 / 70

Sample parser errors
S

NP

PRP

He

‘‘

‘‘

VP

MD

will

RB

not

VP

AUX

be

VP

VBN

shaken

PRT

RP

out

PP

IN

by

NP

JJ

external

NNS

events

,

,

ADVP

RB

however

S

ADJP

JJ

surprising

,

,

JJ

alarming

CC

or

JJ

vexing

:

...

.

.

S

NP

PRP

He

‘‘

‘‘

VP

MD

will

RB

not

VP

AUX

be

VP

VBN

shaken

PRT

RP

out

PP

IN

by

NP

NP

JJ

external

NNS

events

,

,

ADJP

RB

however

JJ

surprising

,

,

JJ

alarming

CC

or

JJ

vexing

:

...

.

.

65 / 70

S

NP

JJ

Soviet

NNS

leaders

VP

VBD

said

SBAR

S

NP

PRP

they

VP

MD

would

VP

VB

support

NP

PRP$

their

NNP

Kabul

NNS

clients

PP

IN

by

NP

NP

DT

all

NNS

means

ADJP

JJ

necessary

:

--

CC

and

AUX

did

.

.

S

NP

JJ

Soviet

NNS

leaders

VP

VP

VBD

said

SBAR

S

NP

PRP

they

VP

MD

would

VP

VB

support

NP

PRP$

their

NNP

Kabul

NNS

clients

PP

IN

by

NP

NP

DT

all

NNS

means

ADJP

JJ

necessary

:

--

CC

and

VP

AUX

did

.

.

66 / 70

S

NP

NNP

Kia

VP

AUX

is

NP

NP

DT

the

ADJP

RBS

most

JJ

aggressive

PP

IN

of

NP

NP

DT

the

NNP

Korean

NNP

Big

NNP

Three

PP

IN

in

NP

NN

offering

NN

financing

.

.

S

NP

NNP

Kia

VP

AUX

is

NP

NP

DT

the

RBS

most

JJ

aggressive

PP

IN

of

NP

DT

the

NNP

Korean

NNP

Big

NNP

Three

PP

IN

in

S

VP

VBG

offering

NP

NN

financing

.

.

67 / 70

S

ADVP

NP

CD

Two

NNS

years

RB

ago

,

,

NP

DT

the

NN

district

VP

VBD

decided

S

VP

TO

to

VP

VB

limit

NP

DT

the

NNS

bikes

S

VP

TO

to

VP

VB

fire

NP

NNS

roads

PP

IN

in

NP

PRP$

its

CD

65,000

JJ

hilly

NNS

acres

.

.

S

ADVP

NP

CD

Two

NNS

years

IN

ago

,

,

NP

DT

the

NN

district

VP

VBD

decided

S

VP

TO

to

VP

VB

limit

NP

DT

the

NNS

bikes

PP

TO

to

NP

NP

NN

fire

NNS

roads

PP

IN

in

NP

PRP$

its

CD

65,000

JJ

hilly

NNS

acres

.

.

68 / 70

S

NP

DT

The

NN

company

ADVP

RB

also

VP

VBD

pleased

NP

NNS

analysts

PP

IN

by

S

VP

VBG

announcing

NP

NP

CD

four

JJ

new

NN

store

NNS

openings

VP

VBN

planned

PP

IN

for

NP

JJ

fiscal

CD

1990

,

,

S

VP

VBG

ending

NP

JJ

next

NNP

August

.

.

S

NP

DT

The

NN

company

ADVP

RB

also

VP

VBD

pleased

NP

NNS

analysts

PP

IN

by

S

VP

VBG

announcing

NP

NP

CD

four

JJ

new

NN

store

NNS

openings

VP

VBN

planned

PP

IN

for

NP

NP

JJ

fiscal

CD

1990

,

,

VP

VBG

ending

NP

JJ

next

NNP

August

.

.

69 / 70

S

CC

But

NP

NNS

funds

ADVP

RB

generally

VP

AUX

are

VP

ADVP

RB

better

VBN

prepared

NP

DT

this

NN

time

RP

around

.

.

S

CC

But

NP

NNS

funds

ADVP

RB

generally

VP

AUX

are

ADJP

RBR

better

JJ

prepared

ADVP

NP

DT

this

NN

time

RB

around

.

.

70 / 70

	Introduction
	Non-local dependencies and the PCFG MLE
	Generative statistical parsers
	Exponential (a.k.a. Maximum Entropy) parsing models
	Coarse to fine reranking
	Self-training of the reranking parser
	Sample parser errors

