
Improving nonparameteric Bayesian inference:

experiments on unsupervised word segmentation

with adaptor grammars

Mark Johnson1 Sharon Goldwater2

1Brown University
Providence, RI

Mark Johnson@Brown.edu

2University of Edinburgh
Edinburgh EH8 9AB

sgwater@inf.ed.ac.uk

NAACL 2009 Conference

1 / 57

Outline
• Non-parametric models learn which parameters are relevant

I Unsupervised word segmentation: identify the words in an
unsegmented stream of phonemes

• Adaptor grammars are a non-parametric extension of PCFGs which
learn the rules as well as their probabilities

• Monte Carlo Markov Chain (MCMC) sampling methods are natural
inference procedures for non-parametric models

I The adaptor grammar inference procedure samples rules as well
their probabilities

• This paper describes improvements to adaptor grammars and their
MCMC inference procedure

I estimating hyper-parameters using slice sampling
I modal decoding from multiple samples from multiple runs
I random initialization instead of incremental initialization
I table label resampling as well as sentence resampling

All but the last apply to a wide variety of models
2 / 57

Outline

Non-parametric inference in word segmentation

Chinese Restaurant Processes

Adaptor grammars
Adaptor grammars for word segmentation
Priors on Adaptor Grammar PYP parameters

Unsupervised inference of Adaptor Grammars
Modal word segmentation
Random vs incremental initialization
Table label resampling

Conclusion

3 / 57

Unsupervised word segmentation

• Input: phoneme sequences with sentence boundaries (Brent)

• Task: identify word boundaries, and hence words

y Mu Nw Ma Mn Mt Nt Mu Ns Mi ND M6 Nb MU Mk

• Useful cues for word segmentation:
I Phonotactics (Fleck)
I Inter-word dependencies (Goldwater)

4 / 57

Word segmentation with PCFGs (1)

Sentence→ Word+

Word→ Phoneme+

which abbreviates

Sentence→ Words
Words→ Word Words
Word→ Phonemes
Phonemes→ Phoneme Phonemes
Phonemes→ Phoneme
Phoneme→ a | . . . | z

Words

Word

Phonemes

Phoneme

D

Phonemes

Phoneme

6

Words

Word

Phonemes

Phoneme

b

Phonemes

Phoneme

U

Phonemes

Phoneme

k

5 / 57

Word segmentation with PCFGs (1)

Sentence→ Word+

Word→ all possible phoneme strings

• But now there are an infinite number of
PCFG rules!

I once we see our (finite) training data,
only finitely many are useful

⇒ the set of parameters (rules) should be
chosen based on training data

Words

Word

D 6

Words

Word

b U k

6 / 57

Outline

Non-parametric inference in word segmentation

Chinese Restaurant Processes

Adaptor grammars
Adaptor grammars for word segmentation
Priors on Adaptor Grammar PYP parameters

Unsupervised inference of Adaptor Grammars
Modal word segmentation
Random vs incremental initialization
Table label resampling

Conclusion

7 / 57

Multinomials and Chinese Restaurant Processes
• Multinomials (e.g., dice, HMMs, PCFGs)

I Observations z = (z1, . . . , zn) ranging over outcomes 1, . . . ,m
(e.g., sides of a die), with outcome k observed nk(z) times

I Predictive distribution with uniform Dirichlet prior:

P(Zn+1 = k | z) ∝ nk(z) + α/m

• Let m→∞

P(Zn+1 = k | z) ∝ nk(z) if k appears in z

P(Zn+1 6∈ z | z) ∝ α

• Insist outcomes are enumerated in order
⇒ Chinese Restaurant Process

P(Zn+1 = k | z) ∝
{

nk(z) if k ≤ m = max(z)
α if k = m + 1

8 / 57

Chinese Restaurant Process (0)

• Customer→ table mapping z =

• P(z) = 1

• Next customer chooses a table according to:

P(occupied table) ∝ number of customers at table
P(next unoccupied table) ∝ α

9 / 57

Chinese Restaurant Process (1)

α

• Customer→ table mapping z = 1

• P(z) = α/α

• Next customer chooses a table according to:

P(occupied table) ∝ number of customers at table
P(next unoccupied table) ∝ α

10 / 57

Chinese Restaurant Process (2)

1 α

• Customer→ table mapping z = 1, 1

• P(z) = α/α× 1/(1 + α)

• Next customer chooses a table according to:

P(occupied table) ∝ number of customers at table
P(next unoccupied table) ∝ α

11 / 57

Chinese Restaurant Process (3)

2 α

• Customer→ table mapping z = 1, 1, 2

• P(z) = α/α× 1/(1 + α)× α/(2 + α)

• Next customer chooses a table according to:

P(occupied table) ∝ number of customers at table
P(next unoccupied table) ∝ α

12 / 57

Chinese Restaurant Process (4)

2 1 α

• Customer→ table mapping z = 1, 1, 2, 1

• P(z) = α/α× 1/(1 + α)× α/(2 + α)× 2/(3 + α)

• Next customer chooses a table according to:

P(occupied table) ∝ number of customers at table
P(next unoccupied table) ∝ α

13 / 57

Labelled Chinese Restaurant Process (0)

• Table→ label mapping y =

• Customer→ table mapping z =

• Output sequence x =

• P(x) = 1

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

14 / 57

Labelled Chinese Restaurant Process (1)

fish

α

• Table→ label mapping y = fish

• Customer→ table mapping z = 1

• Output sequence x = fish

• P(x) = α/α× P0(fish)

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

15 / 57

Labelled Chinese Restaurant Process (2)

fish

1 α

• Table→ label mapping y = fish

• Customer→ table mapping z = 1, 1

• Output sequence x = fish,fish

• P(x) = P0(fish)× 1/(1 + α)

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

16 / 57

Labelled Chinese Restaurant Process (3)

fish

2

apple

α

• Table→ label mapping y = fish,apple

• Customer→ table mapping z = 1, 1, 2

• Output sequence x = fish,fish,apple

• P(x) = P0(fish)× 1/(1 + α)× α/(2 + α)P0(apple)

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

17 / 57

Labelled Chinese Restaurant Process (4)

fish

2

apple

1 α

• Table→ label mapping y = fish,apple

• Customer→ table mapping z = 1, 1, 2

• Output sequence x = fish,fish,apple,fish

• P(x) = P0(fish)× 1/(1 + α)× α/(2 + α)P0(apple)× 2/(3 + α)

• Base distribution P0(Y) generates a label yk for each table k

• All customers sitting at table k (i.e., zi = k) share label yk

• Customer i sitting at table zi has label xi = yzi

18 / 57

Pitman-Yor Process (0)

• Customer→ table mapping z =
• P(z) = 1

• In CRPs, probability of choosing a table ∝ number of customers
⇒ strong rich get richer effect

• Pitman-Yor processes take mass a from each occupied table and
give it to the new table

P(Zn+1 = k | z) ∝
{

nk(z)− a if k ≤ m = max(z)
ma + b if k = m + 1

19 / 57

Pitman-Yor Process (1)

b

• Customer→ table mapping z = 1
• P(z) = b/b

• In CRPs, probability of choosing a table ∝ number of customers
⇒ strong rich get richer effect

• Pitman-Yor processes take mass a from each occupied table and
give it to the new table

P(Zn+1 = k | z) ∝
{

nk(z)− a if k ≤ m = max(z)
ma + b if k = m + 1

20 / 57

Pitman-Yor Process (2)

1− a a + b

• Customer→ table mapping z = 1, 1
• P(z) = b/b × (1− a)/(1 + b)

• In CRPs, probability of choosing a table ∝ number of customers
⇒ strong rich get richer effect

• Pitman-Yor processes take mass a from each occupied table and
give it to the new table

P(Zn+1 = k | z) ∝
{

nk(z)− a if k ≤ m = max(z)
ma + b if k = m + 1

21 / 57

Pitman-Yor Process (3)

2− a a + b

• Customer→ table mapping z = 1, 1, 2
• P(z) = b/b × (1− a)/(1 + b)× (a + b)/(2 + b)

• In CRPs, probability of choosing a table ∝ number of customers
⇒ strong rich get richer effect

• Pitman-Yor processes take mass a from each occupied table and
give it to the new table

P(Zn+1 = k | z) ∝
{

nk(z)− a if k ≤ m = max(z)
ma + b if k = m + 1

22 / 57

Pitman-Yor Process (4)

2− a 1− a 2a + b

• Customer→ table mapping z = 1, 1, 2, 1
• P(z) = b/b× (1− a)/(1 + b)× (a + b)/(2 + b)× (2− a)/(3 + b)

• In CRPs, probability of choosing a table ∝ number of customers
⇒ strong rich get richer effect

• Pitman-Yor processes take mass a from each occupied table and
give it to the new table

P(Zn+1 = k | z) ∝
{

nk(z)− a if k ≤ m = max(z)
ma + b if k = m + 1

23 / 57

Summary: Chinese Restaurant Processes and

Pitman-Yor Processes

• Chinese Restaurant Processes (CRPs) generalize
Dirichlet-Multinomials to an unbounded number of outcomes

I concentration parameter α controls how likely a new outcome is
I CRPs exhibit a rich get richer power-law behaviour

• Pitman-Yor Processes (PYPs) generalize CRPs by adding an
additional parameter (each PYP has a and b parameters)

I PYPs can describe a wider range of distributions than CRPs

• Labelled CRPs and PYPs use a base distribution to label each
table

I base distribution can have infinite support
I concentrates mass on a countable subset

24 / 57

Outline

Non-parametric inference in word segmentation

Chinese Restaurant Processes

Adaptor grammars
Adaptor grammars for word segmentation
Priors on Adaptor Grammar PYP parameters

Unsupervised inference of Adaptor Grammars
Modal word segmentation
Random vs incremental initialization
Table label resampling

Conclusion

25 / 57

Adaptor grammars: informal description

• The trees generated by an adaptor grammar are defined by CFG
rules as in a CFG

• A subset of the nonterminals are adapted

• Unadapted nonterminals expand by picking a rule and recursively
expanding its children, as in a PCFG

• Adapted nonterminals can expand in two ways:
I by picking a rule and recursively expanding its children, or
I by generating a previously generated tree (with probability

proportional to the number of times previously generated)

• Implemented by having a CRP/PYP for each adapted nonterminal

• The CFG rules of the adapted nonterminals determine the base
distributions of these CRPs/PYPs

26 / 57

Adaptor grammar for stem-suffix morphology (0)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme?

Generated words:
27 / 57

Adaptor grammar for stem-suffix morphology (1a)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme?

Generated words:
28 / 57

Adaptor grammar for stem-suffix morphology (1b)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme?

Generated words:
29 / 57

Adaptor grammar for stem-suffix morphology (1c)

Word→ Stem Suffix

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words:
30 / 57

Adaptor grammar for stem-suffix morphology (1d)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words: cats
31 / 57

Adaptor grammar for stem-suffix morphology (2a)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words: cats
32 / 57

Adaptor grammar for stem-suffix morphology (2b)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words: cats
33 / 57

Adaptor grammar for stem-suffix morphology (2c)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme?
Suffix

s

Generated words: cats
34 / 57

Adaptor grammar for stem-suffix morphology (2d)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Word

Stem

d o g

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme?
Suffix

s

Generated words: cats, dogs
35 / 57

Adaptor grammar for stem-suffix morphology (3)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Word

Stem

d o g

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme?
Suffix

s

Generated words: cats, dogs, cats
36 / 57

Adaptor grammars as generative processes

• The sequence of trees generated by an adaptor grammar are not
independent

I it learns from the trees it generates
I if an adapted subtree has been used frequently in the past, it’s

more likely to be used again

• but the sequence of trees is exchangable (important for sampling)

• An unadapted nonterminal A expands using A→ β with
probability θA→β

• Each adapted nonterminal A is associated with a CRP (or PYP)
that caches previously generated subtrees rooted in A

• An adapted nonterminal A expands:
I to a subtree τ rooted in A with probability proportional to the

number of times τ was previously generated
I using A → β with probability proportional to αAθA→β

37 / 57

Unigram word segmentation adaptor grammar

Sentence→ Word+

Word→ Phoneme+

• Adapted
nonterminals
indicated by
underlining

Words

Word

Phonemes

Phoneme

D

Phonemes

Phoneme

6

Words

Word

Phonemes

Phoneme

b

Phonemes

Phoneme

U

Phonemes

Phoneme

k

• Adapting Words means that the grammar learns the probability of
each Word subtree independently

• Unigram word segmentation on Brent corpus: 56% token f-score

38 / 57

Unigram adaptor grammar after learning
• Given the Brent corpus and the unigram adaptor grammar

Words→ Word+

Word→ Phon+

the learnt adapted grammar contains 1,712 rules such as:

15758 Words →Word Words
9791 Words →Word
1660 Word→ Phon+

402 Word→ y u
137 Word→ I n
111 Word→ w I T
100 Word→ D 6 d O g i
45 Word→ I n D 6
20 Word→ I n D 6 h Q s

39 / 57

unigram: Words

• Unigram word segmentation model assumes each word is generated
independently

• But there are strong inter-word dependencies (collocations)

• Unigram model can only capture such dependencies by analyzing
collocations as words (Goldwater 2006)

Words

Word

t e k

Word

D 6 d O g i

Word

Q t

Words

Word

y u w a n t t u

Word

s i D 6

Word

b U k

40 / 57

colloc: Collocations ⇒ Words

Sentence→ Colloc+

Colloc→ Word+

Word→ Phon+

Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

• A Colloc(ation) consists of one or more words

• Both Words and Collocs are adapted (learnt)

• Significantly improves word segmentation accuracy over unigram
model (76% f-score; ≈ Goldwater’s bigram model)

41 / 57

colloc-syll: Collocations ⇒ Words ⇒ Syllables
Sentence→ Colloc+ Colloc→ Word+

Word→ SyllableIF Syllable→ (Onset) Rhyme
Word→ SyllableI (Syllable) (Syllable) SyllableF
Onset→ Consonant+ Rhyme→ Nucleus (Coda)
Nucleus→ Vowel+ Coda→ Consonant+

Sentence

Colloc

Word

OnsetI

h

Nucleus

&

CodaF

v

Colloc

Word

Nucleus

6

Word

OnsetI

d r

Nucleus

I

CodaF

N k

• With 2 Collocation levels, f-score = 87%

42 / 57

colloc-syll: Collocations ⇒ Words ⇒ Syllables

Sentence

Colloc2

Colloc

Word

OnsetI

g

Nucleus

I

CodaF

v

Word

OnsetI

h

Nucleus

I

CodaF

m

Colloc

Word

Nucleus

6

Word

OnsetI

k

Nucleus

I

CodaF

s

Colloc2

Colloc

Word

Nucleus

o

Word

OnsetI

k

Nucleus

e

43 / 57

Another application of adaptor grammars:

Learning structure in names

• Many different kinds of names
I Person names, e.g., Mr. Sam Spade Jr.
I Company names, e.g., United Motor Manufacturing Corp.
I Other names, e.g., United States of America

• At least some of these are structured; e.g., Mr is an honorific, Sam
is first name, Spade is a surname, etc.

• Penn treebanks assign flat structures to base NPs (including
names)

• Data set: 10,787 unique lowercased sequences of base NP proper
nouns, containing 23,392 words

• Can we automatically learn the structure of these names?

44 / 57

Adaptor grammar for names
NP→ Unordered+ Unordered→ Word+

NP→ (A0) (A1) . . . (A6) NP→ (B0) (B1) . . . (B6)
A0→ Word+ B0→ Word+

.
A6→ Word+ B6→ Word+

• Warning: hand-selected output, no evaluation!

(A0 barrett) (A3 smith)
(A0 albert) (A2 j.) (A3 smith) (A4 jr.)
(A0 robert) (A2 b.) (A3 van dover)
(B0 aim) (B1 prime rate) (B2 plus) (B5 fund) (B6 inc.)
(B0 balfour) (B1 maclaine) (B5 international) (B6 ltd.)
(B0 american express) (B1 information services) (B6 co)
(U abc) (U sports)
(U sports illustrated)
(U sports unlimited)

45 / 57

Bayesian inference for PYP parameters
• Adaptor grammars have 1 (CRP) or 2 (PYP) hyper-parameters for

each adapted non-terminal X

• Previous work used CRP adaptors with tied parameters

• Bayesian prior: for each adapted nonterminal X

aX ∼ Beta(1, 1)

bX ∼ Gamma(10, 0.1)

I Gamma(10, 0.1) is a vague Gamma prior (MacKay 2003)
I permits aX and bX to vary with adapted nonterminal X

• Estimate with slice sampling (no proposal distribution; Neal 2003)

• Biggest improvement on complex models, e.g., colloc-syll:
I tied parameters 78% token f-score
I aX = 0, sampling bX (i.e., CRP adaptors) 84% token f-score
I sampling aX and bX (i.e., PYP adaptors) 87% token f-score

46 / 57

Outline

Non-parametric inference in word segmentation

Chinese Restaurant Processes

Adaptor grammars
Adaptor grammars for word segmentation
Priors on Adaptor Grammar PYP parameters

Unsupervised inference of Adaptor Grammars
Modal word segmentation
Random vs incremental initialization
Table label resampling

Conclusion

47 / 57

Unsupervised inference via Gibbs sampling

• Observations (terminal strings) x = (x1, . . . , xn)
Hidden labels (parse trees) t = (t1, . . . , tn)
Probabilistic model (adaptor grammar) P(x, t)

• Gibbs sampling algorithm:

initialize t somehow (e.g., random trees)
repeat forever:

pick an index j ∈ 1, . . . , n at random
replace tj with a random sample from P(t | xj , t−j)

where t−j = (t1, . . . , tj−1, tj+1, . . . , tn)

• After burn-in the samples t are distributed according to P(t | x)

48 / 57

Finding the modal word segmentation
• Previous work decoded using last sampled trees (2,000 epochs)

• After burn-in, samples are distributed according to P(t | x)
⇒ use samples to identify modal word segmentation

• Modal decoding:
I For each sentence xi collect sample parses si = (s

(1)
i , . . . , s

(800)
i)

(every 10th epoch from epochs 1,000–2,000 from 8 runs)

I Compute word segmentations wi = (w
(1)
i , . . . ,w

(800)
i) from parses

I Compute modal segmentation ŵi = argmaxw nw (wi),
where nw (wi) is the number of times w appears in wi

• Improves word segmentation token f-score in all models

Model Average Max-modal
unigram 55% 56%
colloc 74% 76%
colloc-syll 85% 87%

• Goodman (1998) max-marginal decoding should also be possible

49 / 57

Random vs incremental initialization

• The Gibbs sampler parse trees t needs to be initialized somehow

Random initialization: Assign each string xi a random parse ti
generated by base PCFG

Incremental initialization: Sample ti from P(t | xi , t1:i−1)

• Incremental initialization is easy to implement in a Gibbs sampler

• Incremental initialization improves token f-score in all models,
especially on simple models

Model Random Incremental
unigram 56% 81%
colloc 76% 86%
colloc-syll 87% 89%

but see caveats on next slide!

50 / 57

Incremental initialization produces low-probability

parses

185000

190000

195000

200000

205000

210000

215000

220000

0 500 1000 1500 2000

−
lo

g
P

(x
,t

)

Iteration

incremental initialization
random initialization

51 / 57

Why incremental initialization produces

low-probability parses

• Incremental initialization produces sample parses t with lower
probability P(t | x)

• Possible explanation: (Goldwater’s 2006 analysis of Brent’s model)
I All the models tend to undersegment (i.e., find collocations

instead of words)
I Incremental initialization greedily searches for common substrings
I Shorter strings are more likely to be recurr early than longer ones

52 / 57

Table label resampling

• Each adapted non-terminal has a CRP with tables labelled with
parses

• “Rich get richer” ⇒ resampling a sentence’s parse reuses the same
cached subtrees

• Resample table labels as well sentence parses
I A table label may be used in many sentence parses
⇒ Resampling a single table label may change the parses of a single

sentence
⇒ table label resampling can improve mobility with grammars with a

hierarchy of adapted non-terminals

• Essential for grammars with a complex hierarchical structure

53 / 57

Table label resampling example

Label on table in Chinese Restaurant for colloc

Colloc

Word

y u

Word

w a n t t u

⇒
Colloc

Word

y u

Word

w a n t

Word

t u

Resulting changes in parse trees
Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

⇒
Sentence

Colloc

Word

y u

Word

w a n t

Word

t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k
Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

t e k

Word

D 6

Word

d O g i

Word

Q t

⇒
Sentence

Colloc

Word

y u

Word

w a n t

Word

t u

Colloc

Word

t e k

Word

D 6

Word

d O g i

Word

Q t

54 / 57

Table label resampling produces much

higher-probability parses

185000

190000

195000

200000

205000

210000

215000

220000

0 500 1000 1500 2000

−
lo

g
P

(x
,t

)

Iteration

no table label resampling
table label resampling

55 / 57

Outline

Non-parametric inference in word segmentation

Chinese Restaurant Processes

Adaptor grammars
Adaptor grammars for word segmentation
Priors on Adaptor Grammar PYP parameters

Unsupervised inference of Adaptor Grammars
Modal word segmentation
Random vs incremental initialization
Table label resampling

Conclusion

56 / 57

Conclusion

• MCMC sampling is a natural approach to inference in
non-parametric models

• Put Bayesian priors on PYP hyperparameters and slice sample
I improves colloc-syll model by 9%

• Modal decoding from multiple samples
I improves colloc-syll model by 2%

• Random initialization instead of incremental initialization
I hurts colloc-syll model by 2%, but produces higher probability

parses

• Table label resampling in hierarchical CRPs/PYPs
I improves colloc-syll model by 20%

• Taken together, performance of colloc-syll model improves from
last year’s 78% to 87% token f-score.

57 / 57

	Non-parametric inference in word segmentation
	Chinese Restaurant Processes
	Adaptor grammars
	Adaptor grammars for word segmentation
	Priors on Adaptor Grammar PYP parameters

	Unsupervised inference of Adaptor Grammars
	Modal word segmentation
	Random vs incremental initialization
	Table label resampling

	Conclusion

