
Inference for PCFGs and Adaptor Grammars

NIPS grammar induction workshop

Mark Johnson

Macquarie University
Sydney, Australia

December 2009

1 / 64

Talk outline
• Bayesian inference for PCFG rule probabilities

I collapsed Gibbs sampler (integrates out rule probabilities)

• Learn grammar rules by non-parametric Bayes
⇒ adaptor grammars

I there are an unbounded number of potential rules
I but a finite number of finite parses can only use a finite

number of rules
⇒ only explicitly represent the rules used in previous parse

samples

• Improvements to adaptor grammars and MCMC inference
procedure

I estimating hyper-parameters using slice sampling
I modal decoding from multiple samples from multiple runs
I random initialization instead of incremental initialization
I table label resampling as well as sentence resampling

2 / 64

Outline

Inference for PCFG rule probabilities

Learning grammar rules (not just probabilities)

Adaptor grammars

Non-parametric inference in word segmentation
Priors on Adaptor Grammar PYP parameters

Unsupervised inference of Adaptor Grammars
Modal word segmentation
Random vs incremental initialization
Table label resampling

Conclusion

3 / 64

Probabilistic context-free grammars
• Rules in Context-Free Grammars (CFGs) expand nonterminals into

sequences of terminals and nonterminals

• A Probabilistic CFG (PCFG) associates each nonterminal with a
multinomial distribution over the rules that expand it

• Probability of a tree is the product of the probabilities of the rules
used to construct it

Rule r θr Rule r θr

S → NP VP 1.0
NP → Sam 0.75 NP → Sandy 0.25
VP → barks 0.6 VP → snores 0.4

P


Sam

NP

S

VP

barks

 = 0.45 P


Sandy

NP

S

VP

snores

 = 0.1

4 / 64

Maximum likelihood estimation from visible parses

• Each rule expansion is sampled from parent’s multinomial

⇒ Maximum Likelihood Estimator (MLE) is rule’s relative frequency

Sam

NP

S

VP

barks Sam

NP

S

VP

snores Sandy

NP

S

VP

snores

Rule r nr θr Rule r nr θr

S → NP VP 3 1.0
NP → Sam 2 0.66 NP → Sandy 1 0.33
VP → barks 1 0.33 VP → snores 2 0.66

• But MLE is often overly certain, especially with sparse data
I E.g., “accidental zeros” nr = 0⇒ θr = 0.

5 / 64

Bayesian estimation from visible parses
• Bayesian estimators estimate a distribution over rule probabilities

P(θ | n)︸ ︷︷ ︸
Posterior

∝ P(n | θ)︸ ︷︷ ︸
Likelihood

P(θ)︸︷︷︸
Prior

• Dirichlet distributions are conjugate priors for multinomials
I A Dirichlet distribution over (θ1, . . . , θm) is specified by

positive parameters (α1, . . . , αm)
I If Prior = Dir(α) then Posterior = Dir(α+ n)

 0
 1
 2
 3
 4
 5

 0 0.2 0.4 0.6 0.8 1

P(
θ 1

|α
)

Rule probability θ1

α = (1,1)
α = (3,2)

α = (21,11)

6 / 64

Sparse Dirichlet priors
• As α→ 0, Dirichlet distributions become peaked around 0

“Grammar includes some of these rules, but we don’t know which!”

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

P(
θ 1

|α
)

Rule probability θ1

α = (1,1)
α = (0.5,0.5)

α = (0.25,0.25)
α = (0.1,0.1)

7 / 64

Estimating rule probabilities from strings alone

• Input: terminal strings and grammar rules

• Output: rule probabilities θ

• In general, no closed-form solution for θ
I iterative algorithms usually involving repeatedly reparsing

training data

• Expectation Maximization (EM) procedure generalizes visible data
ML estimators to hidden data problems

• Inside-Outside algorithm is a cubic-time EM algorithm for PCFGs

• Bayesian estimation of θ via:
I Variational Bayes or
I Markov Chain Monte Carlo (MCMC) methods such as Gibbs

sampling

8 / 64

Gibbs sampler for parse trees and rule probabilities

• Input: terminal strings (x1, . . . , xn), grammar rules and Dirichlet
prior parameters α

• Output: stream of sample rule probabilities θ and parse trees
t = (t1, . . . , tn)

• Algorithm:

Assign parse trees to the strings somehow (e.g., randomly)
Repeat forever:

Compute rule counts n from t
Sample θ from Dir(α+ n)
For each string xi :

replace ti with a tree sampled from P(t|xi ,θ).

• After burn-in, (θ, t) are distributed according to Bayesian posterior

• Sampling parse tree from P(t|xi ,θ) involves parsing string xi .

9 / 64

Collapsed Gibbs samplers

• Integrate out rule probabilities θ to obtain predictive distribution
P(ti |xi , t−i) of parse ti for sentence xi given other parses t−i

• Collapsed Gibbs sampler

For each sentence xi in training data:

Replace ti with a sample from P(t|xi , t−i)

• A problem: P(ti |xi , t−i) is not a PCFG distribution

⇒ no dynamic-programming sampler (AFAIK)

S

NP

cats

VP

V

chase

NP

dogs

S

NP

dogs

VP

V

chase

NP

dogs

10 / 64

Metropolis-Hastings samplers

• Metropolis-Hastings (MH) acceptance-rejection procedure uses
samples from a proposal distribution to produce samples from a
target distribution

• When sentence size � training data size, P(ti |xi , t−i) is almost a
PCFG distribution

I use a PCFG approximation based on t−i as proposal
distribution

I apply MH to transform proposals to P(ti |xi , t−i)

• To construct a Metropolis-Hastings sampler you need to be able
to:

I efficiently sample from proposal distribution
I calculate ratios of parse probabilities under proposal

distribution
I calculate ratios of parse probabilities under target distribution

11 / 64

Collapsed Metropolis-within-Gibbs sampler for

PCFGs

• Input: terminal strings (x1, . . . , xn), grammar rules and Dirichlet
prior parameters α

• Output: stream of sample parse trees t = (t1, . . . , tn)

• Algorithm:

Assign parse trees to the strings somehow (e.g., randomly)
Repeat forever:

For each sentence xi in training data:
Compute rule counts n−i from t−i

Compute proposal grammar probabilities θ from n−i

Sample a tree t from P(t|xi ,θ)
Replace ti with t according to

Metropolis-Hastings accept-reject formula

12 / 64

Q: Are there efficient local-move tree samplers?

• DP PCFG samplers require O(n3) time per sample
I are there faster samplers?

• For HMMs, a point-wise sampler resamples the state labeling one
word at a time

I All state sequences reachable by one or more such moves
I Transition probabilities don’t require dynamic programming

⇒ no need for MH

• Question: Are there efficiently-computable local moves that can
transform any parse into any other parse of same string?

I for HMMs, DP sampler generally more effective than
point-wise sampler

I point-wise samplers could be more effective for grammars with
complex DP parsing algorithms (e.g., TAG, CCG, LFG, HPSG)

13 / 64

Outline

Inference for PCFG rule probabilities

Learning grammar rules (not just probabilities)

Adaptor grammars

Non-parametric inference in word segmentation
Priors on Adaptor Grammar PYP parameters

Unsupervised inference of Adaptor Grammars
Modal word segmentation
Random vs incremental initialization
Table label resampling

Conclusion

14 / 64

Learning grammar rules

• Input: terminal strings

• Output: grammar rules and rule probabilities θ

• “Generate and test” approach (Carroll and Charniak, Stolcke)

Guess an initial set of rules
Repeat:

re-estimate rule probabilities from strings
prune low probability rules
propose additional potentially useful rules

• Non-parametric Bayesian methods seem to provide a more
systematic approach

15 / 64

Non-parameteric Bayesian extensions to PCFGs

• Non-parametric ⇒ no fixed set of parameters

• Two obvious non-parametric extensions to PCFGs:
I let the set of non-terminals grow unboundedly

– given an initial grammar with coarse-grained categories,
split non-terminals into more refined categories
S12 → NP7 VP4 instead of S→ NP VP.

– PCFG generalization of “infinite HMM”.
I let the set of rules grow unboundedly ⇒ adaptor grammars

– use a (meta-)grammar to generate potential rules
– learn subtrees and their probabilities

i.e., tree substitution grammar, where we learn the
fragments as well as their probabilities

• No reason both can’t be done at once . . .

16 / 64

Learning syntax is hard!

• Can formulate learning syntax as Bayesian estimation

• On toy data, Bayesian estimators do well

• Results are disappointing on “real” data
I wrong algorithm?
I wrong kind of grammar?
I wrong type of training data?

• This paper focuses on learning grammars for simpler phenomena:
I Morphological segmentation (e.g., walking = walk+ing)
I Word segmentation of unsegmented phoneme sequences
I Learning collocations in topic models
I Learning internal structure of named-entity NPs

17 / 64

A CFG for stem-suffix morphology

Word → Stem Suffix Chars → Char
Stem → Chars Chars → Char Chars
Suffix → Chars Char → a | b | c | . . .
Word

Stem

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

• Grammar’s trees can represent any
segmentation of words into stems
and suffixes

⇒ Can represent true segmentation

• But grammar’s units of
generalization (PCFG rules) are
“too small” to learn morphemes

18 / 64

A “CFG” with one rule per possible morpheme

Word → Stem Suffix
Stem → all possible stems
Suffix → all possible suffixes

Word

Stem

t a l k

Suffix

i n g #

Word

Stem

j u m p

Suffix

#

• A rule for each morpheme
⇒ “PCFG” can represent probability of each morpheme

• Unbounded number of possible rules, so this is not a PCFG
I not a practical problem, as only a finite set of rules could

possibly be used in any particular data set

19 / 64

Maximum likelihood estimate for θ is trivial

• Maximum likelihood selects θ that minimizes KL-divergence
between model and training data W distributions

• Saturated model in which each word is generated by its own rule
replicates training data distribution W exactly

⇒ Saturated model is maximum likelihood estimate

• Maximum likelihood estimate does not find any suffixes

Word

Stem

t a l k i n g

Suffix

#

20 / 64

Forcing generalization using Dirichlet priors

• Maximum Likelihood solution analyses each word as a separate
stem

I fails to generalize
I one non-zero probability rule per word type in data

• Dirichlet prior prefers θ = 0 when α→ 0
I use Dirichlet prior to prefer sparse rule probability vectors

• Following experiments use orthographic verbs from U Penn. WSJ
treebank

21 / 64

Posterior samples from WSJ verb tokens
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect expect
expects expects expects expects

expected expected expected expected
expecting expect ing expect ing expect ing

include include include include
includes includes includ es includ es
included included includ ed includ ed
including including including including

add add add add
adds adds adds add s

added added add ed added
adding adding add ing add ing

continue continue continue continue
continues continues continue s continue s
continued continued continu ed continu ed
continuing continuing continu ing continu ing

report report report report
reports report s report s report s

reported reported reported reported
reporting report ing report ing report ing
transport transport transport transport

transports transport s transport s transport s
transported transport ed transport ed transport ed
transporting transport ing transport ing transport ing

downsize downsiz e downsiz e downsiz e
downsized downsiz ed downsiz ed downsiz ed
downsizing downsiz ing downsiz ing downsiz ing

dwarf dwarf dwarf dwarf
dwarfs dwarf s dwarf s dwarf s

dwarfed dwarf ed dwarf ed dwarf ed
outlast outlast outlast outlas t

outlasted outlast ed outlast ed outlas ted

22 / 64

Log posterior for models on token data

-1.2e+06

-1e+06

-800000

 1e-20 1e-10 1

lo
g

P(
Pa

rs
es

 |
α)

Dirichlet prior parameter α

Null suffixes
True suffixes

Posterior

• Correct solution is nowhere near as likely as posterior

⇒ model is wrong!
23 / 64

Inflection is not statistically independent

Word → Stem Suffix

24 / 64

Types and tokens
• A word type is a distinct word shape

• A word token is an occurrence of a word

Data = “the cat chased the other cat”

Tokens = “the”, “cat”, “chased”, “the”, “other”, “cat”

Types = “the”, “cat”, “chased”, “other”

• Estimating θ from word types rather than word tokens eliminates
(most) frequency variation

I 4 common verb suffixes, so when estimating from verb types
θSuffix→i n g # ≈ 0.25

• Several psycholinguists believe that humans learn morphology from
word types

• Goldwater et al investigated a morphology-learning model that
learnt from an interpolation of types and tokens

25 / 64

Posterior samples from WSJ verb types
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect exp ect
expects expect s expect s exp ects

expected expect ed expect ed exp ected
expect ing expect ing expect ing exp ecting
include includ e includ e includ e
include s includ es includ es includ es

included includ ed includ ed includ ed
including includ ing includ ing includ ing

add add add add
adds add s add s add s
add ed add ed add ed add ed

adding add ing add ing add ing
continue continu e continu e continu e
continue s continu es continu es continu es
continu ed continu ed continu ed continu ed

continuing continu ing continu ing continu ing
report report repo rt rep ort

reports report s repo rts rep orts
reported report ed repo rted rep orted

report ing report ing repo rting rep orting
transport transport transport transport
transport s transport s transport s transport s
transport ed transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsi ze downsi ze
downsiz ed downsiz ed downsi zed downsi zed
downsiz ing downsiz ing downsi zing downsi zing

dwarf dwarf dwarf dwarf
dwarf s dwarf s dwarf s dwarf s
dwarf ed dwarf ed dwarf ed dwarf ed

outlast outlast outlas t outla st
outlasted outlas ted outla sted

26 / 64

Log posterior of models on type data

-400000

-200000

 0

 1e-20 1e-10 1

lo
g

P(
Pa

rs
es

 |
α)

Dirichlet prior parameter α

Null suffixes
True suffixes

Optimal suffixes

• Correct solution is close to optimal at α = 10−3

27 / 64

Desiderata for an extension of PCFGs

• PCFG rules are “too small” to be effective units of generalization
⇒ generalize over groups of rules
⇒ units of generalization should be chosen based on data

• Type-based inference mitigates over-dispersion
⇒ Hierarchical Bayesian model where:

I context-free rules generate types
I another process replicates types to produce tokens

• Adaptor grammars:
I learn probability of entire subtrees (how a nonterminal

expands to terminals)
I use grammatical hierarchy to define a Bayesian hierarchy, from

which type-based inference emerges
I inspired by Sharon Goldwater’s models

28 / 64

Outline

Inference for PCFG rule probabilities

Learning grammar rules (not just probabilities)

Adaptor grammars

Non-parametric inference in word segmentation
Priors on Adaptor Grammar PYP parameters

Unsupervised inference of Adaptor Grammars
Modal word segmentation
Random vs incremental initialization
Table label resampling

Conclusion

29 / 64

Adaptor grammars: informal description

• The trees generated by an adaptor grammar are defined by CFG
rules as in a CFG

• A subset of the nonterminals are adapted
I each adapted nonterminal A has a concentration parameter αA

• An unadapted nonterminal A expands using A→ β with
probability θA→β

• An adapted nonterminal A expands:
I to a subtree τ rooted in A with probability proportional to the

number of times τ was previously generated
I using A → β with probability proportional to αAθA→β

30 / 64

Adaptor grammar for stem-suffix morphology (0)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme?

Generated words:
31 / 64

Adaptor grammar for stem-suffix morphology (1a)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme?

Generated words:
32 / 64

Adaptor grammar for stem-suffix morphology (1b)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme?

Generated words:
33 / 64

Adaptor grammar for stem-suffix morphology (1c)

Word→ Stem Suffix

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words:
34 / 64

Adaptor grammar for stem-suffix morphology (1d)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words: cats
35 / 64

Adaptor grammar for stem-suffix morphology (2a)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words: cats
36 / 64

Adaptor grammar for stem-suffix morphology (2b)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words: cats
37 / 64

Adaptor grammar for stem-suffix morphology (2c)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme?
Suffix

s

Generated words: cats
38 / 64

Adaptor grammar for stem-suffix morphology (2d)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Word

Stem

d o g

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme?
Suffix

s

Generated words: cats, dogs
39 / 64

Adaptor grammar for stem-suffix morphology (3)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Word

Stem

d o g

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme?
Suffix

s

Generated words: cats, dogs, cats
40 / 64

Adaptor grammars as generative processes
• Unadapted nonterminals expand by picking a rule and recursively

expanding its children, as in a PCFG

• Adapted nonterminals can expand in two ways:
I by picking a rule and recursively expanding its children, or
I by generating a previously generated tree (with probability

proportional to the number of times previously generated)

• Each adapted nonterminal A has a CRP (or PYP) that caches
previously generated subtrees rooted in A

• The CFG rules of the adapted nonterminals determine the base
distributions of these CRPs/PYPs

• The trees generated by an adaptor grammar are not independent
I if an adapted subtree has been used frequently in the past, it’s

more likely to be used again
⇒ an adaptor grammar learns from the trees it generates

• but the sequence of trees is exchangable (important for sampling)
41 / 64

Properties of adaptor grammars

• Possible trees generated by CFG rules
but the probability of each adapted tree is estimated separately

• Probability of adapted nonterminal A expanding to subtree τ is
proportional to:

I the number of times τ was seen before
⇒ “rich get richer” dynamics (Zipf distributions)

I plus αA times prob. of generating it via PCFG expansion
⇒ nonzero but decreasing probability of novel structures

⇒ Useful compound structures can be more probable than their parts

• Base PCFG rule probabilities estimated from table labels
⇒ learns from types, not tokens

42 / 64

Outline

Inference for PCFG rule probabilities

Learning grammar rules (not just probabilities)

Adaptor grammars

Non-parametric inference in word segmentation
Priors on Adaptor Grammar PYP parameters

Unsupervised inference of Adaptor Grammars
Modal word segmentation
Random vs incremental initialization
Table label resampling

Conclusion

43 / 64

Unsupervised word segmentation

• Input: phoneme sequences with sentence boundaries (Brent)

• Task: identify word boundaries, and hence words

y Mu Nw Ma Mn Mt Nt Mu Ns Mi ND M6 Nb MU Mk

• Useful cues for word segmentation:
I Phonotactics (Fleck)
I Inter-word dependencies (Goldwater)

44 / 64

Word segmentation with PCFGs (1)

Sentence→ Word+

Word→ Phoneme+

which abbreviates

Sentence→ Words
Words→ Word Words
Word→ Phonemes
Phonemes→ Phoneme Phonemes
Phonemes→ Phoneme
Phoneme→ a | . . . | z

Words

Word

Phonemes

Phoneme

D

Phonemes

Phoneme

6

Words

Word

Phonemes

Phoneme

b

Phonemes

Phoneme

U

Phonemes

Phoneme

k

45 / 64

Word segmentation with PCFGs (1)

Sentence→ Word+

Word→ all possible phoneme strings

• But now there are an infinite number of
PCFG rules!

I once we see our (finite) training data,
only finitely many are useful

⇒ the set of parameters (rules) should be
chosen based on training data

Words

Word

D 6

Words

Word

b U k

46 / 64

Unigram word segmentation adaptor grammar

Sentence→ Word+

Word→ Phoneme+

• Adapted nonterminals
indicated by underlining

Words

Word

Phonemes

Phoneme

D

Phonemes

Phoneme

6

Words

Word

Phonemes

Phoneme

b

Phonemes

Phoneme

U

Phonemes

Phoneme

k

• Adapting Words means that the grammar learns the probability of
each Word subtree independently

• Unigram word segmentation on Brent corpus: 56% token f-score

47 / 64

Unigram adaptor grammar after learning
• Given the Brent corpus and the unigram adaptor grammar

Words→ Word+

Word→ Phon+

the learnt adapted grammar contains 1,712 rules such as:

15758 Words →Word Words
9791 Words →Word
1660 Word→ Phon+

402 Word→ y u
137 Word→ I n
111 Word→ w I T
100 Word→ D 6 d O g i
45 Word→ I n D 6
20 Word→ I n D 6 h Q s

48 / 64

unigram: Words

• Unigram word segmentation model assumes each word is generated
independently

• But there are strong inter-word dependencies (collocations)

• Unigram model can only capture such dependencies by analyzing
collocations as words (Goldwater 2006)

Words

Word

t e k

Word

D 6 d O g i

Word

Q t

Words

Word

y u w a n t t u

Word

s i D 6

Word

b U k

49 / 64

colloc: Collocations ⇒ Words

Sentence→ Colloc+

Colloc→ Word+

Word→ Phon+

Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

• A Colloc(ation) consists of one or more words

• Both Words and Collocs are adapted (learnt)

• Significantly improves word segmentation accuracy over unigram
model (76% f-score; ≈ Goldwater’s bigram model)

50 / 64

colloc-syll: Collocations ⇒ Words ⇒ Syllables
Sentence→ Colloc+ Colloc→ Word+

Word→ SyllableIF Syllable→ (Onset) Rhyme
Word→ SyllableI (Syllable) (Syllable) SyllableF
Onset→ Consonant+ Rhyme→ Nucleus (Coda)
Nucleus→ Vowel+ Coda→ Consonant+

Sentence

Colloc

Word

OnsetI

h

Nucleus

&

CodaF

v

Colloc

Word

Nucleus

6

Word

OnsetI

d r

Nucleus

I

CodaF

N k

• With 2 Collocation levels, f-score = 87%

51 / 64

colloc-syll: Collocations ⇒ Words ⇒ Syllables

Sentence

Colloc2

Colloc

Word

OnsetI

g

Nucleus

I

CodaF

v

Word

OnsetI

h

Nucleus

I

CodaF

m

Colloc

Word

Nucleus

6

Word

OnsetI

k

Nucleus

I

CodaF

s

Colloc2

Colloc

Word

Nucleus

o

Word

OnsetI

k

Nucleus

e

52 / 64

Bayesian inference for PYP parameters
• Adaptor grammars have 1 (CRP) or 2 (PYP) hyper-parameters for

each adapted non-terminal X

• Previous work used CRP adaptors with tied parameters

• Bayesian prior: for each adapted nonterminal X

aX ∼ Beta(1, 1)

bX ∼ Gamma(10, 0.1)

I Gamma(10, 0.1) is a vague Gamma prior (MacKay 2003)
I permits aX and bX to vary with adapted nonterminal X

• Estimate with slice sampling (no proposal distribution; Neal 2003)

• Biggest improvement on complex models, e.g., colloc-syll:
I tied parameters 78% token f-score
I aX = 0, sampling bX (i.e., CRP adaptors) 84% token f-score
I sampling aX and bX (i.e., PYP adaptors) 87% token f-score

53 / 64

Outline

Inference for PCFG rule probabilities

Learning grammar rules (not just probabilities)

Adaptor grammars

Non-parametric inference in word segmentation
Priors on Adaptor Grammar PYP parameters

Unsupervised inference of Adaptor Grammars
Modal word segmentation
Random vs incremental initialization
Table label resampling

Conclusion

54 / 64

Unsupervised inference via Gibbs sampling

• Observations (terminal strings) x = (x1, . . . , xn)
Hidden labels (parse trees) t = (t1, . . . , tn)
Probabilistic model (adaptor grammar) P(x, t)

• Gibbs sampling algorithm:

initialize t somehow (e.g., random trees)
repeat forever:

pick an index j ∈ 1, . . . , n at random
replace tj with a random sample from P(t | xj , t−j)

where t−j = (t1, . . . , tj−1, tj+1, . . . , tn)

• After burn-in the samples t are distributed according to P(t | x)

55 / 64

Finding the modal word segmentation
• Previous work decoded using last sampled trees (2,000 epochs)
• After burn-in, samples are distributed according to P(t | x)
⇒ use samples to identify modal word segmentation

• Modal decoding:
I For each sentence xi save sample parses si = (s

(1)
i , . . . , s

(800)
i)

(every 10th epoch from epochs 1,000–2,000 from 8 runs)
I Compute word segmentations wi = (w

(1)
i , . . . ,w

(800)
i) from

parses
I Compute modal segmentation ŵi = argmaxw nw (wi),

where nw (wi) is the number of times w appears in wi

• Improves word segmentation token f-score in all models
Model Average Max-modal
unigram 55% 56%
colloc 74% 76%
colloc-syll 85% 87%

• Goodman (1998) max-marginal decoding should also be possible
56 / 64

Random vs incremental initialization

• The Gibbs sampler parse trees t needs to be initialized somehow

Random initialization: Assign each string xi a random parse ti

generated by base PCFG
Incremental initialization: Sample ti from P(t | xi , t1:i−1)

• Incremental initialization is easy to implement in a Gibbs sampler

• Incremental initialization improves token f-score in all models,
especially on simple models

Model Random Incremental
unigram 56% 81%
colloc 76% 86%
colloc-syll 87% 89%

but see caveats on next slide!

57 / 64

Incremental initialization produces low-probability

parses

185000

190000

195000

200000

205000

210000

215000

220000

0 500 1000 1500 2000

−
lo

g
P

(x
,t

)

Iteration

incremental initialization
random initialization

58 / 64

Why incremental initialization produces

low-probability parses

• Incremental initialization produces sample parses t with lower
probability P(t | x)

• Possible explanation: (Goldwater’s 2006 analysis of Brent’s model)
I All the models tend to undersegment (i.e., find collocations

instead of words)
I Incremental initialization greedily searches for common

substrings
I Shorter strings are more likely to be recurr early than longer

ones

59 / 64

Table label resampling

• Each adapted non-terminal has a CRP with tables labelled with
parses

• “Rich get richer” ⇒ resampling a sentence’s parse reuses the same
cached subtrees

• Resample table labels as well sentence parses
I A table label may be used in many sentence parses
⇒ Resampling a single table label may change the parses of a

single sentence
⇒ table label resampling can improve mobility with grammars

with a hierarchy of adapted non-terminals

• Essential for grammars with a complex hierarchical structure

60 / 64

Table label resampling example
Label on table in Chinese Restaurant for colloc

Colloc

Word

y u

Word

w a n t t u

⇒
Colloc

Word

y u

Word

w a n t

Word

t u

Resulting changes in parse trees
Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

⇒

Sentence

Colloc

Word

y u

Word

w a n t

Word

t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

t e k

Word

D 6

Word

d O g i

Word

Q t

⇒

Sentence

Colloc

Word

y u

Word

w a n t

Word

t u

Colloc

Word

t e k

Word

D 6

Word

d O g i

Word

Q t 61 / 64

Table label resampling produces much

higher-probability parses

185000

190000

195000

200000

205000

210000

215000

220000

0 500 1000 1500 2000

−
lo

g
P

(x
,t

)

Iteration

no table label resampling
table label resampling

62 / 64

Outline

Inference for PCFG rule probabilities

Learning grammar rules (not just probabilities)

Adaptor grammars

Non-parametric inference in word segmentation
Priors on Adaptor Grammar PYP parameters

Unsupervised inference of Adaptor Grammars
Modal word segmentation
Random vs incremental initialization
Table label resampling

Conclusion

63 / 64

Conclusion
• MCMC sampling is a natural approach to inference in

non-parametric models

• Put Bayesian priors on PYP hyperparameters and slice sample
I improves colloc-syll model by 9%

• Modal decoding from multiple samples
I improves colloc-syll model by 2%

• Random initialization instead of incremental initialization
I hurts colloc-syll model by 2%, but produces higher probability

parses

• Table label resampling in hierarchical CRPs/PYPs
I improves colloc-syll model by 20%

• Taken together, performance of colloc-syll model improves from
last year’s 78% to 87% token f-score.

• Software available from cog.brown.edu/˜mj

64 / 64

	Inference for PCFG rule probabilities
	Learning grammar rules (not just probabilities)
	Adaptor grammars
	Non-parametric inference in word segmentation
	Priors on Adaptor Grammar PYP parameters

	Unsupervised inference of Adaptor Grammars
	Modal word segmentation
	Random vs incremental initialization
	Table label resampling

	Conclusion

