
Grammars and Topic Models

Mark Johnson
Macquarie University

Sydney
Australia

joint work with Michael Frank, Sharon Goldwater, Tom Griffiths and Bevan
Jones

December 2009

1 / 69

Talk summary

• Probabilistic Context-Free Grammars (PCFGs)
I a way of specifying certain stochastic automata

• LDA topic models as PCFGs

• Non-parametric generalizations of PCFGs
I “infinite” PCFGs
I adaptor grammars

• Topic models and adaptor grammars
I topical collocations
I the structure of names
I learning words and their meanings

2 / 69

Outline

Probabilistic Context-Free Grammars

LDA topic models as PCFGs

Adaptor grammars

Adaptor grammars and topic models

Conclusion

3 / 69

Probabilistic Context-Free Grammars
• Rules in Context-Free Grammars (CFGs) expand nonterminals

into sequences of terminals and nonterminals
• A Probabilistic CFG (PCFG) associates each nonterminal A

with a multinomial distribution θA over the rules
RA = {A→ α} that expand it

• Probability of a tree is the product of the probabilities of the
rules used to construct it

Rule r θr Rule r θr
S→ NP VP 1.0
NP→ Sam 0.75 NP→ Sandy 0.25
VP→ barks 0.6 VP→ snores 0.4

P


Sam

NP

S

VP

barks

 = 0.45 P


Sandy

NP

S

VP

snores

 = 0.1

4 / 69

Context-free grammars
A context-free grammar (CFG) consists of:
• a finite set N of nonterminals,
• a finite set W of terminals disjoint from N ,
• a finite set R of rules A→ β, where A ∈ N and β ∈ (N ∪W)?

• a start symbol S ∈ N .
Each A ∈ N ∪W generates a set TA of trees.
These are the smallest sets satisfying:
• If A ∈ W then TA = {A}.
• If A ∈ N then:

TA =
⋃

A→B1...Bn∈RA

TreeA(TB1 , . . . , TBn)

where RA = {A→ β : A→ β ∈ R}, and

TreeA(TB1 , . . . , TBn) =

{
�� PP
A

t1 tn. . .
:
ti ∈ TBi

,
i = 1, . . . , n

}
The set of trees generated by a CFG is TS. 5 / 69

Probabilistic context-free grammars
A probabilistic context-free grammar (PCFG) is a CFG and a vector
θ, where:

• θA→β is the probability of expanding the nonterminal A using
the production A→ β.

Defines distributions GA over trees TA for A ∈ N ∪W :

GA =


δA if A ∈ W∑
A→B1...Bn∈RA

θA→B1...BnTDA(GB1 , . . . , GBn) if A ∈ N

where δA puts all its mass onto the singleton tree A, and:

TDA(G1, . . . , Gn)

(
�� PP
A

t1 tn. . .

)
=

n∏
i=1

Gi(ti).

TDA(G1, . . . , Gn) is a distribution over TA where each subtree ti is
generated independently from Gi.

6 / 69

Bayesian inference for rule probabilities

• A PCFG specifies a multinomial distribution θA for each
nonterminal A over the rules A→ α expanding A

I θA→α is probability of A expanding to α
I probability of a parse t is a product of multinomials

• Conjugate prior: θA | αA ∼ Dir(αA) for each nonterminal A

• Given a corpus of parse trees t, posterior distribution for
θA | t,αA ∼ Dir(αA + nA(t))

• Given a corpus of strings w (the yields of t), joint posterior
distribution over

I rule probabilities θ
I parse trees t

is intractable, but can be approximated by:
I variational Bayes (mean field approximation)
I Markov chain Monte Carlo

7 / 69

Outline

Probabilistic Context-Free Grammars

LDA topic models as PCFGs

Adaptor grammars

Adaptor grammars and topic models

Conclusion

8 / 69

LDA topic models as PCFGs

• Each document i generates a
distribution over m topics

• Each topic j generates a
(unigram) distribution over
vocabulary X .

• Preprocess input by prepending
a document id to every sentence

Sentence→ Doci i ∈ 1, . . . , n
Doci → i i ∈ 1, . . . , n
Doci → Doci Topicj i ∈ 1, . . . , n; j ∈ 1, . . . ,m
Topicj → x j ∈ 1, . . . ,m;x ∈ X

Sentence

Doc3

Doc3

Doc3

Doc3

Doc3

_3

Topic4

shallow

Topic4

circuits

Topic4

compute

Topic7

faster

9 / 69

Left spine identifies document

• Left spine passes document id throughout sentence

Sentence→ Doci i ∈ 1, . . . , n
Doci → i i ∈ 1, . . . , n
Doci → Doci Topicj i ∈ 1, . . . , n; j ∈ 1, . . . ,m
Topicj → x j ∈ 1, . . . ,m;x ∈ X

Sentence

Doc3

Doc3

Doc3

Doc3

Doc3

_3

Topic4

shallow

Topic4

circuits

Topic4

compute

Topic7

faster

10 / 69

Document → topic rules

• Document → topic rules specify probability of topic within
document

Sentence→ Doci i ∈ 1, . . . , n
Doci → i i ∈ 1, . . . , n
Doci → Doci Topicj i ∈ 1, . . . , n; j ∈ 1, . . . ,m
Topicj → x j ∈ 1, . . . ,m;x ∈ X

Sentence

Doc3

Doc3

Doc3

Doc3

Doc3

_3

Topic4

shallow

Topic4

circuits

Topic4

compute

Topic7

faster

11 / 69

Topic → word rules

• Topic → word rules specify probability of word within topic

Sentence→ Doci i ∈ 1, . . . , n
Doci → i i ∈ 1, . . . , n
Doci → Doci Topicj i ∈ 1, . . . , n; j ∈ 1, . . . ,m
Topicj → x j ∈ 1, . . . ,m;x ∈ X

Sentence

Doc3

Doc3

Doc3

Doc3

Doc3

_3

Topic4

shallow

Topic4

circuits

Topic4

compute

Topic7

faster

12 / 69

Bayesian inference for LDA PCFGs

• Dirichlet priors on Document → Topic and Topic → Word
distributions

• General-purpose PCFG parsing/estimation algorithms require
time cubic in length of sentence

I not a good idea for long documents!
• More efficient algorithms for these kinds of grammars

I (standard LDA inference algorithms)
I predictive (e.g., Earley) parsing algorithms
I identify compositions finite state automata/transducers that

these grammars encode

13 / 69

Extended LDA PCFG (1): sticky topics

• HMM generating sequences of topics
in each document

• Non-uniform Dirichlet prior over
topic→topic transitions
⇒ sticky topics

• Grammar rule schemata given
I document identifiers D,
I topics T = {1, . . . ,m}, and
I vocabulary W

Sentence

Doc3,7

Doc3,4

Doc3,4

Doc3,4

_3 Topic4

shallow

Topic4

circuits

Topic4

compute

Topic7

faster

Sentence→ Docd,t for each d ∈ D and t ∈ T
Docd,t → d Topict for each d ∈ D and t ∈ T
Docd,t → Docd,t′ Topict for each d ∈ D and t, t′ ∈ T
Topict → w for each t ∈ T and w ∈ W

14 / 69

Extended LDA PCFG (2): document

segmentation

• Divide documents into segments

• Grammar rule schemata given
I document identifiers D,
I segments S = {1, . . . , `},
I topics T = {1, . . . ,m}, and
I vocabulary W

Sentence

Doc3,1

Doc3,0

Doc3,0

Doc3,0

_3 Topic4

shallow

Topic4

circuits

Topic4

compute

Topic7

faster

Sentence→ Docd,s for each d ∈ D and s ∈ S
Docd,s → d for each d ∈ D and s ∈ S
Docd,s → Docd,s Topict for each d ∈ D, s ∈ S and t ∈ T
Docd,s → Docd,s′ for each d ∈ D and s, s′ ∈ S
Topict → w for each t ∈ T and w ∈ W

15 / 69

What’s the point of using grammars?

• All of these models can be stated directly (without using
grammars)

I grammars don’t make inference easier or produce better results
• Grammars provide another way of describing complex models

I mutually recursive hierarchies of sequential structures
• There are generic algorithms for PCFG parsing and inference

I rapid proto-typing of new models
I may lead to (more) efficient implementation via stochastic

automata

16 / 69

Outline

Probabilistic Context-Free Grammars

LDA topic models as PCFGs

Adaptor grammars

Adaptor grammars and topic models

Conclusion

17 / 69

Nonparametric generalizations of PCFGs

• Two obvious nonparametric extensions of PCFGs:
I let the number of nonterminals N grow unboundedly

– refine the nonterminals of an original grammar
e.g., S35 → NP27 VP17

⇒ infinite PCFG
I let the number of rules R grow unboundedly

– “new” rules are compositions of several rules from original
grammar

– equivalent to caching tree fragments
⇒ adaptor grammars

• No reason both can’t be done together . . .

18 / 69

A CFG for stem-suffix morphology

Word → Stem Suffix Chars → Char
Stem → Chars Chars → Char Chars
Suffix → Chars Char → a | b | c | . . .

Word

Stem

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

• Grammar’s trees can represent
any segmentation of words into
stems and suffixes

⇒ Can represent true segmentation

• But grammar’s units of
generalization (PCFG rules) are
“too small” to learn morphemes

19 / 69

A “CFG” with one rule per possible morpheme

Word → Stem Suffix
Stem → all possible stems
Suffix → all possible suffixes

Word

Stem

t a l k

Suffix

i n g #

Word

Stem

j u m p

Suffix

#

• A rule for each morpheme
⇒ “PCFG” can represent probability of each morpheme

• Unbounded number of possible rules, so this is not a PCFG
I not a practical problem, as only a finite set of rules could

possibly be used in any particular data set

20 / 69

Maximum likelihood estimate for θ is trivial

• Maximum likelihood selects θ that minimizes KL-divergence
between model and training data W distributions

• Saturated model in which each word is generated by its own rule
replicates training data distribution W exactly

⇒ Saturated model is maximum likelihood estimate

• Maximum likelihood estimate does not find any suffixes

Word

Stem

t a l k i n g

Suffix

#

21 / 69

Forcing generalization via sparse Dirichlet priors
• Idea: use Bayesian prior that prefers fewer rules
• Set of rules is fixed in standard PCFG estimation,

but can “turn rule off” by setting θA→β ≈ 0
• Dirichlet prior with αA→β ≈ 0 prefers θA→β ≈ 0

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

P(
θ 1

|α
)

Rule probability θ1

α = (1,1)
α = (0.5,0.5)

α = (0.25,0.25)
α = (0.1,0.1)

22 / 69

Morphological segmentation experiment

• Trained on orthographic verbs from U Penn. Wall Street
Journal treebank

• Uniform Dirichlet prior prefers sparse solutions as α→ 0

• Gibbs sampler samples from posterior distribution of parses
I reanalyses each word based on parses of the other words

23 / 69

Posterior samples from WSJ verb tokens
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect expect
expects expects expects expects

expected expected expected expected
expecting expect ing expect ing expect ing

include include include include
includes includes includ es includ es
included included includ ed includ ed

including including including including
add add add add

adds adds adds add s
added added add ed added

adding adding add ing add ing
continue continue continue continue

continues continues continue s continue s
continued continued continu ed continu ed

continuing continuing continu ing continu ing
report report report report

reports report s report s report s
reported reported reported reported

reporting report ing report ing report ing
transport transport transport transport

transports transport s transport s transport s
transported transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsiz e downsiz e

downsized downsiz ed downsiz ed downsiz ed
downsizing downsiz ing downsiz ing downsiz ing

dwarf dwarf dwarf dwarf
dwarfs dwarf s dwarf s dwarf s

dwarfed dwarf ed dwarf ed dwarf ed
outlast outlast outlast outlas t

outlasted outlast ed outlast ed outlas ted

24 / 69

Log posterior for models on token data

-1.2e+06

-1e+06

-800000

 1e-20 1e-10 1

lo
g

P(
Pa

rs
es

 |
α)

Dirichlet prior parameter α

Null suffixes
True suffixes

Posterior

• Correct solution is nowhere near as likely as posterior

⇒ model is wrong!
25 / 69

Relative frequencies of inflected verb forms

26 / 69

Types and tokens
• A word type is a distinct word shape

• A word token is an occurrence of a word

Data = “the cat chased the other cat”

Tokens = “the”, “cat”, “chased”, “the”, “other”, “cat”

Types = “the”, “cat”, “chased”, “other”

• Estimating θ from word types rather than word tokens
eliminates (most) frequency variation

I 4 common verb suffixes, so when estimating from verb types
θSuffix→i n g # ≈ 0.25

• Several psycholinguists believe that humans learn morphology
from word types

• Adaptor grammar mimics Goldwater et al “Interpolating
between Types and Tokens” morphology-learning model

27 / 69

Posterior samples from WSJ verb types
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect exp ect
expects expect s expect s exp ects

expected expect ed expect ed exp ected
expect ing expect ing expect ing exp ecting
include includ e includ e includ e
include s includ es includ es includ es

included includ ed includ ed includ ed
including includ ing includ ing includ ing

add add add add
adds add s add s add s
add ed add ed add ed add ed

adding add ing add ing add ing
continue continu e continu e continu e
continue s continu es continu es continu es
continu ed continu ed continu ed continu ed

continuing continu ing continu ing continu ing
report report repo rt rep ort

reports report s repo rts rep orts
reported report ed repo rted rep orted

report ing report ing repo rting rep orting
transport transport transport transport
transport s transport s transport s transport s
transport ed transport ed transport ed transport ed

transporting transport ing transport ing transport ing
downsize downsiz e downsi ze downsi ze
downsiz ed downsiz ed downsi zed downsi zed
downsiz ing downsiz ing downsi zing downsi zing

dwarf dwarf dwarf dwarf
dwarf s dwarf s dwarf s dwarf s
dwarf ed dwarf ed dwarf ed dwarf ed

outlast outlast outlas t outla st
outlasted outlas ted outla sted

28 / 69

Log posterior of models on type data

-400000

-200000

 0

 1e-20 1e-10 1

lo
g

P(
Pa

rs
es

 |
α)

Dirichlet prior parameter α

Null suffixes
True suffixes

Optimal suffixes

• Correct solution is close to optimal at α = 10−3

29 / 69

Desiderata for an extension of PCFGs

• PCFG rules are “too small” to be effective units of
generalization
⇒ generalize over groups of rules
⇒ units of generalization should be chosen based on data

• Type-based inference mitigates over-dispersion
⇒ Hierarchical Bayesian model where:

I context-free rules generate types
I another process replicates types to produce tokens

• Adaptor grammars:
I learn probability of entire subtrees (how a nonterminal expands

to terminals)
I use grammatical hierarchy to define a Bayesian hierarchy, from

which type-based inference emerges

30 / 69

Adaptor grammars: informal description

• The trees generated by an adaptor grammar are defined by
CFG rules as in a CFG

• A subset of the nonterminals are adapted

• Unadapted nonterminals expand by picking a rule and
recursively expanding its children, as in a PCFG

• Adapted nonterminals can expand in two ways:
I by picking a rule and recursively expanding its children, or
I by generating a previously generated tree (with probability

proportional to the number of times previously generated)

• Implemented by having a CRP for each adapted nonterminal

• The CFG rules of the adapted nonterminals determine the base
distributions of these CRPs

31 / 69

Adaptor grammar for stem-suffix morphology (0)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme?

Generated words:
32 / 69

Adaptor grammar for stem-suffix morphology (1a)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme?

Generated words:
33 / 69

Adaptor grammar for stem-suffix morphology (1b)

Word→ Stem Suffix

Stem→ Phoneme+

Suffix→ Phoneme?

Generated words:
34 / 69

Adaptor grammar for stem-suffix morphology (1c)

Word→ Stem Suffix

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words:
35 / 69

Adaptor grammar for stem-suffix morphology (1d)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words: cats
36 / 69

Adaptor grammar for stem-suffix morphology (2a)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words: cats
37 / 69

Adaptor grammar for stem-suffix morphology (2b)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Suffix→ Phoneme?
Suffix

s

Generated words: cats
38 / 69

Adaptor grammar for stem-suffix morphology (2c)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme?
Suffix

s

Generated words: cats
39 / 69

Adaptor grammar for stem-suffix morphology (2d)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Word

Stem

d o g

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme?
Suffix

s

Generated words: cats, dogs
40 / 69

Adaptor grammar for stem-suffix morphology (3)

Word→ Stem Suffix
Word

Stem

c a t

Suffix

s

Word

Stem

d o g

Suffix

s

Stem→ Phoneme+
Stem

c a t

Stem

d o g

Suffix→ Phoneme?
Suffix

s

Generated words: cats, dogs, cats
41 / 69

Adaptor grammars as generative processes
• The sequence of trees generated by an adaptor grammar are not

independent
I it learns from the trees it generates
I if an adapted subtree has been used frequently in the past, it’s

more likely to be used again
• but the sequence of trees is exchangable (important for

sampling)

• An unadapted nonterminal A expands using A→ β with
probability θA→β

• Each adapted nonterminal A is associated with a CRP (or
PYP) that caches previously generated subtrees rooted in A

• An adapted nonterminal A expands:
I to a subtree τ rooted in A with probability proportional to the

number of times τ was previously generated
I using A → β with probability proportional to αAθA→β

42 / 69

DP adaptor grammars

An adaptor grammar (G,θ,α) is a PCFG (G,θ) together with a
parameter vector α where for each A ∈ N , αA is the concentration
parameter of the Dirichlet process associated with A.

GA ∼ DP(αA, HA) if αA > 0, i.e., A is adapted

= HA otherwise

HA =


δA if A ∈ W∑
A→B1...Bn∈RA

θA→B1...BnTDA(GB1 , . . . , GBn) if A ∈ N

The grammar generates the distribution GS.
One Dirichlet Process for each adapted non-terminal A.

43 / 69

Properties of adaptor grammars

• Possible trees are generated by CFG rules
but the probability of each adapted tree is learned separately

• Probability of adapted subtree τ is proportional to:
I the number of times τ was seen before
⇒ “rich get richer” dynamics (Zipf distributions)

I plus αA times prob. of generating it via PCFG expansion

⇒ Useful compound structures can be more probable than their
parts

• PCFG rule probabilities estimated from table labels
⇒ effectively learns from types, not tokens
⇒ makes learner less sensitive to frequency variation in input

44 / 69

Bayesian hierarchy inverts grammatical hierarchy

• Grammatically, a Word is composed
of a Stem and a Suffix, which are
composed of Chars

• To generate a new Word from an
adaptor grammar

I reuse an old Word, or
I generate a fresh one from the base

distribution, i.e., generate a Stem
and a Suffix

• Lower in the tree
⇒ higher in Bayesian hierarchy

Word

Stem

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

45 / 69

Unsupervised word segmentation

• Input: phoneme sequences with sentence boundaries (Brent)

• Task: identify word boundaries, and hence words

y Mu Nw Ma Mn Mt Nt Mu Ns Mi ND M6 Nb MU Mk

• Useful cues for word segmentation:
I Phonotactics (Fleck)
I Inter-word dependencies (Goldwater)

46 / 69

Word segmentation with PCFGs (1)

Sentence→Word+

Word→ Phoneme+

which abbreviates

Sentence→Words
Words→Word Words
Word→ Phonemes
Phonemes→ Phoneme Phonemes
Phonemes→ Phoneme
Phoneme→ a | . . . | z

Words

Word

Phonemes

Phoneme

D

Phonemes

Phoneme

6

Words

Word

Phonemes

Phoneme

b

Phonemes

Phoneme

U

Phonemes

Phoneme

k

47 / 69

Word segmentation with PCFGs (1)

Sentence→Word+

Word→ all possible phoneme strings

• But now there are an infinite number of
PCFG rules!

I once we see our (finite) training data,
only finitely many are useful

⇒ the set of parameters (rules) should be
chosen based on training data

Words

Word

D 6

Words

Word

b U k

48 / 69

Unigram word segmentation adaptor grammar

Sentence→Word+

Word→ Phoneme+

• Adapted nonterminals
indicated by underlining

Words

Word

Phonemes

Phoneme

D

Phonemes

Phoneme

6

Words

Word

Phonemes

Phoneme

b

Phonemes

Phoneme

U

Phonemes

Phoneme

k

• Adapting Words means that the grammar learns the
probability of each Word subtree independently

• Unigram word segmentation on Brent corpus: 56% token f-score

49 / 69

Adaptor grammar learnt from Brent corpus
• Initial grammar

1 Sentence→Word Sentence 1 Sentence→Word
1 Word→ Phons
1 Phons→ Phon Phons 1 Phons→ Phon
1 Phon→ D 1 Phon→ G
1 Phon→ A 1 Phon→ E

• A grammar learnt from Brent corpus

16625 Sentence→Word Sentence 9791 Sentence→Word
1 Word→ Phons

4962 Phons→ Phon Phons 1575 Phons→ Phon
134 Phon→ D 41 Phon→ G
180 Phon→ A 152 Phon→ E
460 Word→ (Phons (Phon y) (Phons (Phon u)))
446 Word→ (Phons (Phon w) (Phons (Phon A) (Phons (Phon t))))
374 Word→ (Phons (Phon D) (Phons (Phon 6)))
372 Word→ (Phons (Phon &) (Phons (Phon n) (Phons (Phon d))))

50 / 69

Words (unigram model)

Sentence→Word+ Word→ Phoneme+

• Unigram word segmentation model assumes each word is
generated independently

• But there are strong inter-word dependencies (collocations)
• Unigram model can only capture such dependencies by

analyzing collocations as words (Goldwater 2006)

Words

Word

t e k

Word

D 6 d O g i

Word

Q t

Words

Word

y u w a n t t u

Word

s i D 6

Word

b U k

51 / 69

Collocations ⇒ Words

Sentence→ Colloc+

Colloc→Word+

Word→ Phon+

Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

• A Colloc(ation) consists of one or more words

• Both Words and Collocs are adapted (learnt)

• Significantly improves word segmentation accuracy over
unigram model (76% f-score; ≈ Goldwater’s bigram model)

52 / 69

Collocations ⇒ Words ⇒ Syllables

Sentence→ Colloc+ Colloc→Word+

Word→ Syllable Word→ Syllable Syllable
Word→ Syllable Syllable Syllable Syllable→ (Onset) Rhyme
Onset→ Consonant+ Rhyme→ Nucleus (Coda)
Nucleus→ Vowel+ Coda→ Consonant+

Sentence

Colloc

Word

Onset

l

Nucleus

U

Coda

k

Word

Nucleus

&

Coda

t

Colloc

Word

Onset

D

Nucleus

I

Coda

s

• With no supra-word generalizations, f-score = 68%
• With 2 Collocation levels, f-score = 82%

53 / 69

Distinguishing internal onsets/codas helps
Sentence→ Colloc+ Colloc→Word+

Word→ SyllableIF Word→ SyllableI SyllableF
Word→ SyllableI Syllable SyllableF SyllableIF→ (OnsetI) RhymeF
OnsetI→ Consonant+ RhymeF→ Nucleus (CodaF)
Nucleus→ Vowel+ CodaF→ Consonant+

Sentence

Colloc

Word

OnsetI

h

Nucleus

&

CodaF

v

Colloc

Word

Nucleus

6

Word

OnsetI

d r

Nucleus

I

CodaF

N k

• Without distinguishing initial/final clusters, f-score = 82%
• Distinguishing initial/final clusters, f-score = 84%
• With 2 Collocation levels, f-score = 87%

54 / 69

Collocations2 ⇒ Words ⇒ Syllables

Sentence

Colloc2

Colloc

Word

OnsetI

g

Nucleus

I

CodaF

v

Word

OnsetI

h

Nucleus

I

CodaF

m

Colloc

Word

Nucleus

6

Word

OnsetI

k

Nucleus

I

CodaF

s

Colloc2

Colloc

Word

Nucleus

o

Word

OnsetI

k

Nucleus

e

55 / 69

Syllabification learnt by adaptor grammars

• Grammar has no reason to prefer to parse word-internal
intervocalic consonants as onsets

1 Syllable→ Onset Rhyme 1 Syllable→ Rhyme

• The learned grammars consistently analyse them as either
Onsets or Codas ⇒ learns wrong grammar half the time

Word

OnsetI

b

Nucleus

6

Coda

l

Nucleus

u

CodaF

n

• Syllabification accuracy is relatively poor
Syllabification given true word boundaries: f-score = 83%
Syllabification learning word boundaries: f-score = 74%

56 / 69

Preferring Onsets improves syllabification

2 Syllable→ Onset Rhyme 1 Syllable→ Rhyme

• Changing the prior to prefer word-internal Syllables with
Onsets dramatically improves segmentation accuracy

• “Rich get richer” property of Chinese Restaurant Processes
⇒ all ambiguous word-internal consonants analysed as Onsets

Word

OnsetI

b

Nucleus

6

Onset

l

Nucleus

u

CodaF

n

• Syllabification accuracy is much higher than without bias
Syllabification given true word boundaries: f-score = 97%
Syllabification learning word boundaries: f-score = 90%

57 / 69

Modelling sonority classes improves syllabification

Onset→ OnsetStop Onset→ OnsetFricative

OnsetStop → Stop OnsetStop → Stop OnsetFricative

Stop→ p Stop→ t

• Five consonant sonority classes

• OnsetStop generates a consonant cluster with a Stop at left edge

• Prior prefers transitions compatible with sonority hierarchy
(e.g., OnsetStop → Stop OnsetFricative) to transitions that aren’t
(e.g., OnsetFricative → Fricative OnsetStop)

• Same transitional probabilities used for initial and non-initial
Onsets (maybe not a good idea for English?)

• Word-internal Onset bias still necessary

• Syllabification given true boundaries: f-score = 97.5%
Syllabification learning word boundaries: f-score = 91%

58 / 69

Summary: Adaptor grammars for word

segmentation

• Easy to define adaptor grammars that are sensitive to:

Generalization Accuracy
words as units (unigram) 56%
+ associations between words (collocations) 76%
+ syllable structure 87%

• word segmentation improves when you learn other things as
well

I explain away potentially misleading generalizations

59 / 69

Outline

Probabilistic Context-Free Grammars

LDA topic models as PCFGs

Adaptor grammars

Adaptor grammars and topic models

Conclusion

60 / 69

Finding topical collocations

• Modify LDA PCFG so each topic generates sequences of words
I c.f. unigram word segmentation model

Sentence→ Docd for each d ∈ D
Docd → d for each d ∈ D
Docd → Docd Topict for each d ∈ D and t ∈ T
Topict → w+ for each t ∈ T and w ∈ W

where:
I document identifiers D,
I topics T = {1, . . . ,m}, and
I vocabulary W

61 / 69

Sample output on NIPS corpus, 20 topics

• Multiword subtrees learned by adaptor grammar:
T 0 → gradient descent T 1 → associative memory
T 0 → cost function T 1 → standard deviation
T 0 → fixed point T 1 → randomly chosen
T 0 → learning rates T 1 → hamming distance
T 3 → membrane potential T 10 → ocular dominance
T 3 → action potentials T 10 → visual field
T 3 → visual system T 10 → nervous system
T 3 → primary visual cortex T 10 → action potential

• Sample parses:
3 (T 5 polynomial size) (T 15 threshold circuits)
4 (T 11 studied) (T 19 pattern recognition algorithms)
4 (T 2 feedforward neural network) (T 1 implements)
5 (T 11 single) (T 10 ocular dominance stripe) (T 12 low) (T 3 ocularity) (T 12 drift rate)

62 / 69

Learning the structure of names

• Many different kinds of names
I Person names, e.g., Mr. Sam Spade Jr.
I Company names, e.g., United Motor Manufacturing Corp.
I Other names, e.g., United States of America

• At least some of these are structured; e.g., Mr is an honorific,
Sam is first name, Spade is a surname, etc.

I used as part of a coreference system

• Penn treebanks assign flat structures to base NPs (including
names)

• Data set: 10,787 unique lowercased sequences of base NP
proper nouns, containing 23,392 words

63 / 69

Adaptor grammar for names
NP→ (A0) (A1) . . . (A6) NP→ (B0) (B1) . . . (B6)
A0→Word+ B0→Word+

.
A6→Word+ B6→Word+

NP→ Unordered+ Unordered→Word+

• Sample parses:

(A0 barrett) (A3 smith)
(A0 albert) (A2 j.) (A3 smith) (A4 jr.)
(A0 robert) (A2 b.) (A3 van dover)
(B0 aim) (B1 prime rate) (B2 plus) (B5 fund) (B6 inc.)
(B0 balfour) (B1 maclaine) (B5 international) (B6 ltd.)
(B0 american express) (B1 information services) (B6 co)
(U abc) (U sports)
(U sports illustrated)
(U sports unlimited)

64 / 69

Learning words and their referents

PIG|DOG I Mz ND M& Mt ND M6 N p MI Mg︸ ︷︷ ︸
PIG

• Input: unsegmented phoneme sequence and objects in
nonlinguistic context

• Goal: segment into words and learn word-object relationship
65 / 69

AG for (unigram) segmentation and reference

• Given possible referents R, the grammar contains rules:

Sentence→ Referentr for each r ∈ R
Referentr → s for each r ∈ R, r ∈ s ∈ 2R

Referentr → Referentr Wordr for each r ∈ R
Referentr → Referentr Word∅ for each r ∈ R
Wordr → Phonemesr for each r ∈ R ∪ {∅}
Phonemesr → Phoneme+ for each r ∈ R ∪ {∅}

• Sample parses:
T dog|pig (Word I z D & t) (Word dog D 6 d O g i)
T dog|pig (Word D E r z) (Word dog D 6 d O g i)
T dog|pig (Word D & t s 6) (Word pig p I g)

66 / 69

Joint segmentation and reference results

• Simultaneously learning word segmentation and reference does
not seem to improve word segmentation

I non-linguistic context is very impoverished
I relatively few words are referential

• Referential words are segmented better when referents are
provided

• Referential words are segmented better when at utterance ends
I consistent with Frank’s artificial language learning experiments

67 / 69

Outline

Probabilistic Context-Free Grammars

LDA topic models as PCFGs

Adaptor grammars

Adaptor grammars and topic models

Conclusion

68 / 69

Conclusion

• Grammars provide an alternative way of formulating complex
models

• General-purpose inference procedures

• LDA topic models are PCFGs with Dirichlet priors on rule
probabilities

• Two non-parametric generalizations of PCFGs
I split non-terminals (states)
I extend the set of possible rules (adaptor grammars)

• Adaptor grammars and topic models
I topical collocations
I structure in named entities
I learning referents of words

69 / 69

	Probabilistic Context-Free Grammars
	LDA topic models as PCFGs
	Adaptor grammars
	Adaptor grammars and topic models
	Conclusion

