
Learning rules with Adaptor Grammars
(the Berkeley edition)

Mark Johnson

joint work with Sharon Goldwater and Tom Griffiths

May, 2008

1 / 76

The drunk under the lamppost

Late one night, a drunk guy is crawling around under a
lamppost. A cop comes up and asks him what he’s doing.

“I’m looking for my keys,” the drunk says. “I lost them
about three blocks away.”

“So why aren’t you looking for them where you dropped
them?” the cop asks.

The drunk looks at the cop, amazed that he’d ask so
obvious a question. “Because the light is better here.”

2 / 76

Ideas behind talk

• Most successful statistical learning methods are parametric

◮ PCFGs have one probability parameter per rule
◮ PCFG learning: given rules and data, learn rule

probabilities

• Non-parametric learning: learn parameters (rules) as well as
values

• Adaptor grammars:

◮ are a framework for specifying hierarchical nonparametric
Bayesian models

◮ can express a variety of linguistically-interesting structures
◮ are approximated by PCFGs, where number of rules

depends on data
◮ attempt to put ideas behind Goldwater’s models into a

grammatical framework

3 / 76

Language acquisition as Bayesian inference

P(Grammar | Data)
︸ ︷︷ ︸

Posterior

∝ P(Data | Grammar)
︸ ︷︷ ︸

Likelihood

P(Grammar)
︸ ︷︷ ︸

Prior

• Likelihood measures how well grammar describes data

• Prior expresses knowledge of grammar before data is seen

◮ can be very specific (e.g., Universal Grammar)
◮ can be very general (e.g., prefer shorter grammars)

• Posterior is distribution over grammars

◮ expresses uncertainty about which grammar is correct

• But: infinitely many grammars may be consistent with Data

4 / 76

Outline

Probabilistic Context-Free Grammars

Chinese Restaurant Processes

Adaptor Grammars

Word segmentation with Adaptor Grammars

Bayesian inference for Adaptor Grammars

Extending Adaptor Grammars

Conclusion

5 / 76

Probabilistic context-free grammars

• Rules in Context-Free Grammars (CFGs) expand nonterminals
into sequences of terminals and nonterminals

• A Probabilistic CFG (PCFG) associates each nonterminal with
a multinomial distribution over the rules that expand it

• Probability of a tree is the product of the probabilities of the
rules used to construct it

Rule r θr Rule r θr

S → NP VP 1.0
NP → Sam 0.75 NP → Sandy 0.25
VP → barks 0.6 VP → snores 0.4

P

Sam

NP

S

VP

barks

= 0.45 P

Sandy

NP

S

VP

snores

= 0.1

6 / 76

Learning syntactic structure is hard

• Bayesian PCFG estimation works well on toy data

• Results are disappointing on “real” data

◮ wrong data?
◮ wrong rules?

(rules in PCFG are given a priori; can we learn them too?)

• Strategy: study simpler cases

◮ Morphological segmentation (e.g., walking = walk+ing)
◮ Word segmentation of unsegmented utterances

7 / 76

A CFG for stem-suffix morphology
Word → Stem Suffix Chars → Char
Stem → Chars Chars → Char Chars
Suffix → Chars Char → a | b | c | . . .

Word

Stem

Chars

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

• Grammar’s trees can represent
any segmentation of words into
stems and suffixes

⇒ Can represent true segmentation

• But grammar’s units of
generalization (PCFG rules) are
“too small” to learn morphemes

8 / 76

A “CFG” with one rule per possible morpheme

Word → Stem Suffix
Stem → all possible stems
Suffix → all possible suffixes

Word

Stem

t a l k

Suffix

i n g #

Word

Stem

j u m p

Suffix

#

• A rule for each morpheme
⇒ “PCFG” can represent probability of each morpheme

• Unbounded number of possible rules, so this is not a PCFG
◮ not a practical problem, as only a finite set of rules could

possibly be used in any particular data set

9 / 76

Maximum likelihood estimate for θ is trivial

• Maximum likelihood selects θ that minimizes KL-divergence
between model and training data W distributions

• Saturated model in which each word is generated by its own rule
replicates training data distribution W exactly

⇒ Saturated model is maximum likelihood estimate

• Maximum likelihood estimate does not find any suffixes

Word

Stem

t a l k i n g

Suffix

#

10 / 76

Forcing generalization via sparse Dirichlet priors

• Idea: use Bayesian prior that prefers fewer rules
• Set of rules is given a priori in Bayesian PCFGs,

but can “turn rule off” by setting θA→β ≈ 0
• Dirichlet prior with αA→β ≈ 0 prefers θA→β ≈ 0

α = (0.1, 1)
α = (0.2, 1)
α = (0.5, 1)

α = (1, 1)

Probability θ1

P(θ1|α)

10.80.60.40.20

5

4

3

2

1

0

11 / 76

Morphological segmentation experiment

• Trained on orthographic verbs from U Penn. Wall Street
Journal treebank

• Uniform Dirichlet prior prefers sparse solutions as α → 0

• Metropolis-within-Gibbs sampler used to sample from posterior
distribution of parses

◮ reanalyses each word based on a grammar estimated from
the parses of the other words

12 / 76

Posterior samples from WSJ verb tokens
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect expect
expects expects expects expects

expected expected expected expected
expecting expect ing expect ing expect ing

include include include include
includes includes includ es includ es
included included includ ed includ ed

including including including including
add add add add

adds adds adds add s
added added add ed added

adding adding add ing add ing
continue continue continue continue

continues continues continue s continue s
continued continued continu ed continu ed
continuing continuing continu ing continu ing

report report report report
reports report s report s report s

13 / 76

Log posterior of models on token data

Posterior
True suffixes
Null suffixes

Dirichlet prior parameter α

log Pα

11e-101e-20

-800000

-1e+06

-1.2e+06

• Correct solution is nowhere near as likely as posterior

⇒ model is wrong!

14 / 76

Independence assumptions in PCFGs

• Context-free grammars are “context-free” because the possible
expansions of each node do not depend on expansions of other
nodes

• Probabilistic CFGs extend this by requiring each node
expansion to be statistically independent (conditioned on the
node’s label)

• This is a very strong assumption, which is often false!

• Morphology grammar contains rule:

Word → Stem Suffix

• Corresponding independence assumption:

P(Word) = P(Stem) P(Suffix)

causes PCFG model of morphology to fail

15 / 76

Relative frequencies of inflected verb forms

16 / 76

Types and tokens

• A word type is a distinct word shape

• A word token is an occurrence of a word

Data = “the cat chased the other cat”

Tokens = “the”, “cat”, “chased”, “the”, “other”, “cat”

Types = “the”, “cat”, “chased”, “other”

• Estimating θ from word types rather than word tokens
eliminates (most) frequency variation

◮ 4 common verb suffixes, so when estimating from verb
types θSuffix→i n g # ≈ 0.25

• Several psycholinguists believe that humans learn morphology
from word types

• Goldwater et al investigated a morphology-learning model that
learnt from an interpolation of types and tokens

17 / 76

Posterior samples from WSJ verb types
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect exp ect
expects expect s expect s exp ects

expected expect ed expect ed exp ected
expect ing expect ing expect ing exp ecting
include includ e includ e includ e
include s includ es includ es includ es

included includ ed includ ed includ ed
including includ ing includ ing includ ing

add add add add
adds add s add s add s
add ed add ed add ed add ed

adding add ing add ing add ing
continue continu e continu e continu e
continue s continu es continu es continu es
continu ed continu ed continu ed continu ed

continuing continu ing continu ing continu ing
report report repo rt rep ort

reports report s repo rts rep orts

18 / 76

Log posterior of models on type data

Optimal suffixes
True suffixes
Null suffixes

Dirichlet prior parameter α

log Pα

11e-101e-20

0

-200000

-400000

• Correct solution is close to optimal at α = 10−3

19 / 76

Desiderata for an extension of PCFGs

• PCFG rules are “too small” to be effective units of
generalization
⇒ generalize over groups of rules
⇒ units of generalization should be chosen based on data

• Type-based inference mitigates non-context-free dependencies
⇒ Hierarchical Bayesian model where:

◮ context-free rules generate types
◮ another process replicates types to produce tokens

• Adaptor grammars:

◮ learn probability of entire subtrees (how a nonterminal
expands to terminals)

◮ use grammatical hierarchy to define a Bayesian hierarchy,
from which type-based inference emerges

◮ inspired by Goldwater’s work

20 / 76

Outline

Probabilistic Context-Free Grammars

Chinese Restaurant Processes

Adaptor Grammars

Word segmentation with Adaptor Grammars

Bayesian inference for Adaptor Grammars

Extending Adaptor Grammars

Conclusion

21 / 76

Dirichlet-Multinomials with many outcomes

• Dirichlet prior α, observed data X = (X1, . . . , Xn)

P(Xn+1 = k | X, α) ∝ αk + nk(X)

• Consider a sequence of Dirichlet-multinomials where:
◮ total Dirichlet pseudocount is fixed α• =

∑m

k=1 αk, and
◮ prior uniform over outcomes 1, . . . , m, so αk = α•/m
◮ number of outcomes m → ∞

P(Xn+1 = k | X, α•) ∝

nk(X) if nk(X) > 0

α•/m if nk(X) = 0

But when m ≫ n, most k are unoccupied (i.e., nk(X) = 0)

⇒ Probability of a previously seen outcome k ∝ nk(X)
Probability of an outcome never seen before ∝ α•

22 / 76

Labeled Chinese restaurant processes (1a)

&%
'$

α

&%
'$

&%
'$

&%
'$

Generated sequence:

• Each occupied “table” has a label (a “dish”), sampled from PB

• Customer n + 1 enters with tables 1, . . . , m occupied:
◮ sits at old table k ≤ m with probability ∝ nk

◮ sits at new table k = m + 1 with probability ∝ α

• Emit label (dish) on table
◮ if table doesn’t have a label, generate one from PB

⇒ only pay probability cost for label once per table
23 / 76

Labeled Chinese restaurant processes (1b)

&%
'$

dog

PB(dog)

y
&%
'$

&%
'$

&%
'$

Generated sequence: dog

• Each occupied “table” has a label (a “dish”), sampled from PB

• Customer n + 1 enters with tables 1, . . . , m occupied:
◮ sits at old table k ≤ m with probability ∝ nk

◮ sits at new table k = m + 1 with probability ∝ α

• Emit label (dish) on table
◮ if table doesn’t have a label, generate one from PB

⇒ only pay probability cost for label once per table
24 / 76

Labeled Chinese restaurant processes (2a)

&%
'$

dog

1

y
&%
'$

α

&%
'$

&%
'$

Generated sequence: dog

• Each occupied “table” has a label (a “dish”), sampled from PB

• Customer n + 1 enters with tables 1, . . . , m occupied:
◮ sits at old table k ≤ m with probability ∝ nk

◮ sits at new table k = m + 1 with probability ∝ α

• Emit label (dish) on table
◮ if table doesn’t have a label, generate one from PB

⇒ only pay probability cost for label once per table
25 / 76

Labeled Chinese restaurant processes (2b)

&%
'$

dog

y
&%
'$

cat

PB(cat)

y
&%
'$

&%
'$

Generated sequence: dog, cat

• Each occupied “table” has a label (a “dish”), sampled from PB

• Customer n + 1 enters with tables 1, . . . , m occupied:
◮ sits at old table k ≤ m with probability ∝ nk

◮ sits at new table k = m + 1 with probability ∝ α

• Emit label (dish) on table
◮ if table doesn’t have a label, generate one from PB

⇒ only pay probability cost for label once per table
26 / 76

Labeled Chinese restaurant processes (3a)

&%
'$

dog

1

y
&%
'$

cat

1

y
&%
'$

α

&%
'$

Generated sequence: dog, cat

• Each occupied “table” has a label (a “dish”), sampled from PB

• Customer n + 1 enters with tables 1, . . . , m occupied:
◮ sits at old table k ≤ m with probability ∝ nk

◮ sits at new table k = m + 1 with probability ∝ α

• Emit label (dish) on table
◮ if table doesn’t have a label, generate one from PB

⇒ only pay probability cost for label once per table
27 / 76

Labeled Chinese restaurant processes (3b)

&%
'$

dog

y y
&%
'$

cat

y
&%
'$

&%
'$

Generated sequence: dog, cat, dog

• Each occupied “table” has a label (a “dish”), sampled from PB

• Customer n + 1 enters with tables 1, . . . , m occupied:
◮ sits at old table k ≤ m with probability ∝ nk

◮ sits at new table k = m + 1 with probability ∝ α

• Emit label (dish) on table
◮ if table doesn’t have a label, generate one from PB

⇒ only pay probability cost for label once per table
28 / 76

From Chinese restaurants to Dirichlet processes

• Chinese restaurant processes map a distribution PB to a stream
of samples from a different distribution with the same support

• CRPs specify the conditional distribution of the next outcome
given the previous ones

• Each CRP run can produce a different distribution over labels

• It defines a mapping from α and PB to a distribution over
distributions DP(α, PB)

• DP(α, PB) is called a Dirichlet process (DP) with concentration
parameter α and base distribution PB

• The base distribution PB can be defined by a DP ⇒ hierarchy
of DPs

29 / 76

Nonparametric extensions of PCFGs

• Chinese restaurant processes are a nonparametric extension of
Dirichlet-multinomials because the number of states (occupied
tables) depends on the data

• Two obvious nonparametric extensions of PCFGs:

◮ let the number of nonterminals grow unboundedly

– refine the nonterminals of an original grammar
e.g., S35 → NP27 VP17

⇒ infinite PCFG

◮ let the number of rules grow unboundedly

– “new” rules are compositions of several rules from
original grammar

– equivalent to caching tree fragments
⇒ adaptor grammars

• No reason both can’t be done together . . .

30 / 76

Outline

Probabilistic Context-Free Grammars

Chinese Restaurant Processes

Adaptor Grammars

Word segmentation with Adaptor Grammars

Bayesian inference for Adaptor Grammars

Extending Adaptor Grammars

Conclusion

31 / 76

Adaptor grammars: informal description

• An adaptor grammar has a set of CFG rules

• These determine the possible structures as in a CFG

• A subset of the nonterminals are adapted

• Unadapted nonterminals expand by picking a rule and
recursively expanding its children, as in a PCFG

• Adapted nonterminals can expand in two ways:

◮ by picking a rule and recursively expanding its children, or
◮ by generating a previously generated tree (with probability

proportional to the number of times previously generated)

• Each adapted subtree behaves like a new rule added to the
grammar

• The CFG rules of the adapted nonterminals determine the base
distribution over these trees

32 / 76

Adaptor grammars as generative processes

• The sequence of trees generated by an adaptor grammar are not
independent

◮ it learns from the trees it generates
◮ if an adapted subtree has been used frequently in the past,

it’s more likely to be used again

• (but the sequence of trees is exchangable)

• An unadapted nonterminal A expands using A → β with
probability θA→β

• An adapted nonterminal A expands:

◮ to a subtree τ rooted in A with probability proportional to
the number of times τ was previously generated

◮ using A → β with probability proportional to αAθA→β

33 / 76

Adaptor grammar morphology example

Word

Stem

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

#

Word → Stem Suffix

Stem → # Chars

Suffix → #

Suffix → Chars #

Chars → Char

Chars → Char Chars

Char → a | . . . | z

• Stem and Suffix rules generate all possible stems and suffixes

• Adapt Word, Stem and Suffix nonterminals

• One Chinese Restaurant process per adapted nonterminal

34 / 76

Morphology adaptor grammar (0)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Stem restaurant

Stem → #
Stem → #Chars

Suffix restaurant

Suffix → #
Suffix → Chars #

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z
35 / 76

Morphology adaptor grammar (1a)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

•

Stem restaurant

Stem → #
Stem → #Chars

Suffix restaurant

Suffix → #
Suffix → Chars #

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z
36 / 76

Morphology adaptor grammar (1b)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

•

Stem restaurant

Stem → #
Stem → #Chars •

Suffix restaurant

Suffix → #
Suffix → Chars # •
Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z
37 / 76

Morphology adaptor grammar (1c)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•
Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z
38 / 76

Morphology adaptor grammar (1d)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•
Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z
39 / 76

Morphology adaptor grammar (2a)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z
40 / 76

Morphology adaptor grammar (2b)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

•

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

41 / 76

Morphology adaptor grammar (2c)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

•

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

42 / 76

Morphology adaptor grammar (2d)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

•

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

43 / 76

Morphology adaptor grammar (3)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

•

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

•

44 / 76

Morphology adaptor grammar (4a)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

•

•

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

•

45 / 76

Morphology adaptor grammar (4b)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

•

•

•
Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

•

•

46 / 76

Morphology adaptor grammar (4c)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

Suffix

#

•

•

•

•

•
Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

•

•

47 / 76

Morphology adaptor grammar (4d)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

Suffix

#

•

•

•

Word

Stem

Chars

b u y

Suffix

#

•

•
Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

•

•

48 / 76

Properties of adaptor grammars

• Possible trees generated by CFG rules
but the probability of each adapted tree is estimated separately

• Probability of a subtree τ is proportional to:

◮ the number of times τ was seen before
⇒ “rich get richer” dynamics (Zipf distributions)

◮ plus αA times prob. of generating it via PCFG expansion

⇒ Useful compound structures can be more probable than their
parts

• PCFG rule probabilities estimated from table labels
⇒ learns from types, not tokens
⇒ dampens frequency variation

49 / 76

Bayesian hierarchy inverts grammatical hierarchy

• Grammatically, a Word is composed
of a Stem and a Suffix, which are
composed of Chars

• To generate a new Word from an
adaptor grammar

◮ reuse an old Word, or
◮ generate a fresh one from the

base distribution, i.e., generate
a Stem and a Suffix

• Lower in the tree
⇒ higher in Bayesian hierarchy

Word

Stem

Chars

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

50 / 76

Outline

Probabilistic Context-Free Grammars

Chinese Restaurant Processes

Adaptor Grammars

Word segmentation with Adaptor Grammars

Bayesian inference for Adaptor Grammars

Extending Adaptor Grammars

Conclusion

51 / 76

Unigram model of word segmentation

• Unigram model: each word is generated independently

• Input is unsegmented broad phonemic transcription (Brent)
Example: y u w a n t t u s i D 6 b u k

• Adaptor for Word non-terminal caches previously seen words

Words → Word+

Word → Phoneme+

Words

Word

y u

Word

w a n t

Word

t u

Word

s i

Word

D 6

Word

b U k

Words

Word

h & v

Word

6

Word

d

Word

r I N k

• Unigram word segmentation on Brent corpus: 55% token f-score
52 / 76

Unigram model often finds collocations

• Unigram word segmentation model assumes each word is
generated independently

• But there are strong inter-word dependencies (collocations)

• Unigram model can only capture such dependencies by
analyzing collocations as words (Goldwater 2006)

Words

Word

t e k

Word

D 6 d O g i

Word

Q t

Words

Word

y u w a n t t u

Word

s i D 6

Word

b U k

53 / 76

Unigram word segmentation grammar learnt

• Based on the base grammar rules

Words → Word+

Word → Phoneme+

the adapted grammar contains 1,712 rules such as:

15758 Words → Word Words
9791 Words → Word
1660 Word → Phoneme+

402 Word → y u
137 Word → I n
111 Word → w I T
100 Word → D 6 d O g i
45 Word → I n D 6
20 Word → I n D 6 h Q s

54 / 76

Modeling collocations improves segmentation

Sentence → Colloc+

Colloc → Word+

Word → Phoneme⋆

Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

• A Colloc(ation) consists of one or more words
• Both Words and Collocs are adapted (learnt)
• Significantly improves word segmentation accuracy over

unigram model (75% f-score; ≈ Goldwater’s bigram model)
• Two levels of Collocations improves slightly (76%)

55 / 76

Syllables + Collocations + Word segmentation

Sentence → Colloc+ Colloc → Word+

Word → SyllableIF Word → SyllableI SyllableF
Word → SyllableI Syllable SyllableF Syllable → (Onset) Rhyme
Onset → Consonant+ Rhyme → Nucleus (Coda)
Nucleus → Vowel+ Coda → Consonant+

Sentence

Colloc

Word

OnsetI

h

Nucleus

&

CodaF

v

Colloc

Word

Nucleus

6

Word

OnsetI

d r

Nucleus

I

CodaF

N k

• With no supra-word generalizations, f-score = 68%
• With 2 Collocation levels, f-score = 84%
• Without distinguishing initial/final clusters, f-score = 82%

56 / 76

Syllables + 2-level Collocations + Word

segmentation

Sentence

Colloc2

Colloc

Word

OnsetI

g

Nucleus

I

CodaF

v

Word

OnsetI

h

Nucleus

I

CodaF

m

Colloc

Word

Nucleus

6

Word

OnsetI

k

Nucleus

I

CodaF

s

Colloc2

Colloc

Word

Nucleus

o

Word

OnsetI

k

Nucleus

e

57 / 76

Word segmentation results summary

Collocation levels above the word
none 1 level 2 levels 3 levels

none 0.55 0.73 0.75 0.74

B
el

o
w

th
e

w
o
rd morphemes 0.35 0.55 0.79 0.78

syllables 0.32 0.69 0.82 0.81
syllables IF 0.46 0.68 0.84 0.84

• We can learn collocations and syllable structure together with
word segmentation, even though we don’t know where the word
boundaries are

• Learning these together improves word segmentation accuracy

◮ are there other examples of synergistic interaction in
language learning?

58 / 76

Outline

Probabilistic Context-Free Grammars

Chinese Restaurant Processes

Adaptor Grammars

Word segmentation with Adaptor Grammars

Bayesian inference for Adaptor Grammars

Extending Adaptor Grammars

Conclusion

59 / 76

Estimating adaptor grammars

• Need to estimate:
◮ cached subtrees τ for adapted nonterminals
◮ (optional) DP parameters α for adapted nonterminals
◮ (optional) probabilities θ of base grammar rules

• Component-wise Metropolis-within-Gibbs sampler
◮ components are parse tree Ti for each string Wi

◮ sample Ti from P(T |Wi, T−i, α, θ) for each sentence Wi in
turn

• Sampling directly from conditional distribution of parses seems
intractable

◮ construct PCFG proposal grammar G′(T−i) on the fly
◮ each table label τ corresponds to a production in PCFG

approximation
◮ Use accept/reject to convert samples from PCFG approx

to samples from adaptor grammar
60 / 76

Metropolis-with-Gibbs sampler

• Collapsed Gibbs sampler: resample parse Ti given Wi and T−i

• Table counts change within a parse tree

⇒ grammar is not context-free
⇒ breaks standard dynamic programming
⇒ Metropolis accept/reject for each Gibbs sample

• PCFG can express probability of selecting a table given T−i

◮ ignores changing table counts within single parse

• Rules of PCFG proposal grammar G′ consist of:

◮ rules A → β from base PCFG: θ′A→β ∝ αAθA→β

◮ A rule A → Yield(τ) for each table τ in A’s restaurant:
θ′

A→Yield(τ)
∝ nτ , the number of customers at table τ

• Parses of G′ can be mapped back to adaptor grammar parses

61 / 76

Bayesian priors on adaptor grammar parameters

• Parameters of adaptor grammars:
◮ probabilities θA→β of base grammar rules A → β
◮ concentration parameters αA of adapted nonterminals A

• Put Bayesian priors on these parameters
◮ (Uniform) Dirichlet prior on base grammar rule

probabilities θ

◮ Vague Gamma prior on concentration parameter on αA

• We also use a generalization of CRPs called “Pitman-Yor
processes”, and put a uniform Dirichlet prior on its a parameter

• We use a Metropolis-Hastings sampler for a and b parameters
◮ a is sampled from sequence of increasingly narrow

Dirichlets
◮ b is sampled from sequence of increasingly narrow Gammas

• Seems to improve performance with complicated grammars

62 / 76

Random initialization is better than incremental

initialization
• Incremental initialization: assign parse for Wi based on T1,i−1

• Random initialization: initially assign parses Ti randomly

• Incremental initialization seems to get stuck in local optima

incremental initialization
random initialization

Iteration

-
lo

g
p
o
st

er
io

r
p
ro

b
a
b
il
it
y

200150100500

240000

235000

230000

225000

220000

215000

210000

205000

63 / 76

Table label resampling improves mobility

• Gibbs algorithm: resample Ti given Wi and T−i

• Table label resampling resamples the labels on each table
◮ can change parses for many sentences at once

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

Suffix

#

•

•

•

Word

Stem

Chars

b u y

Suffix

#

•

•
Chars factory

Chars → Char

•

•

•

64 / 76

Table label resampling with Colloc grammar

resampling to iteration 100
resampling

no resampling

Iteration

-
lo

g
p
o
st

er
io

r
p
ro

b
a
b
il
it
y

10008006004002000

220000

215000

210000

205000

200000

195000

190000

185000

65 / 76

Segmentation accuracy with Colloc grammar

sequential init, resampling to iteration 100
sequential init, no resampling

sequential init, resampling
random init, resampling to iteration 100

random init, no resampling
random init, resampling

Iteration

W
o
rd

to
k
en

f-
sc

o
re

200150100500

1.2

1

0.8

0.6

0.4

0.2

66 / 76

Outline

Probabilistic Context-Free Grammars

Chinese Restaurant Processes

Adaptor Grammars

Word segmentation with Adaptor Grammars

Bayesian inference for Adaptor Grammars

Extending Adaptor Grammars

Conclusion

67 / 76

Issues with adaptor grammars

• Recursion through adapted nonterminals seems problematic
◮ New tables are created as each node is encountered

top-down
◮ But the tree labeling the table is only known after the

whole subtree has been completely generated
◮ If adapted nonterminals are recursive, might pick a table

whose label we are currently constructing. What then?

• Extend adaptor grammars so adapted fragments can end at
nonterminals a la DOP (currently always go to terminals)

◮ Adding “exit probabilities” to each adapted nonterminal
◮ In some approaches, fragments can grow “above” existing

fragments, but can’t grow “below” (O’Donnell)

• Adaptor grammars conflate grammatical and Bayesian
hierarchies

◮ Might be useful to disentangle them with meta-grammars
68 / 76

Context-free grammars
A context-free grammar (CFG) consists of:

• a finite set N of nonterminals,
• a finite set W of terminals disjoint from N ,
• a finite set R of rules A → β, where A ∈ N and β ∈ (N ∪ W)⋆

• a start symbol S ∈ N .

Each A ∈ N ∪ W generates a set TA of trees.
These are the smallest sets satisfying:

• If A ∈ W then TA = {A}.
• If A ∈ N then:

TA =
⋃

A→B1...Bn∈RA

TreeA(TB1
, . . . , TBn

)

where RA = {A → β : A → β ∈ R}, and

TreeA(TB1
, . . . , TBn

) =

{

�� PP

A

t1 tn. . .
:

ti ∈ TBi
,

i = 1, . . . , n

}

The set of trees generated by a CFG is TS. 69 / 76

Probabilistic context-free grammars
A probabilistic context-free grammar (PCFG) is a CFG and a vector
θ, where:

• θA→β is the probability of expanding the nonterminal A using
the production A → β.

It defines distributions GA over trees TA for A ∈ N ∪ W :

GA =

δA if A ∈ W
∑

A→B1...Bn∈RA

θA→B1...Bn
TDA(GB1

, . . . , GBn
) if A ∈ N

where δA puts all its mass onto the singleton tree A, and:

TDA(G1, . . . , Gn)

(

�� PP

A

t1 tn. . .

)

=
n∏

i=1

Gi(ti).

TDA(G1, . . . , Gn) is a distribution over TA where each subtree ti is
generated independently from Gi.

70 / 76

DP adaptor grammars

An adaptor grammar (G, θ, α) is a PCFG (G, θ) together with a
parameter vector α where for each A ∈ N , αA is the parameter of
the Dirichlet process associated with A.

GA ∼ DP(αA, HA) if αA > 0

= HA if αA = 0

HA =
∑

A→B1...Bn∈RA

θA→B1...Bn
TDA(GB1

, . . . , GBn
)

The grammar generates the distribution GS.
One Dirichlet Process for each adapted non-terminal A (i.e.,
αA > 0).

71 / 76

Recursion in adaptor grammars

• The probability of joint distributions (G, H) is defined by:

GA ∼ DP(αA, HA) if αA > 0

= HA if αA = 0

HA =
∑

A→B1...Bn∈RA

θA→B1...Bn
TDA(GB1

, . . . , GBn
)

• This holds even if adaptor grammar is recursive

• Question: when does this define a distribution over (G, H)?

72 / 76

Adaptive fragment grammars

• Disentangle syntactic and Bayesian hierarchy
◮ Adaptive metagrammar generates fragment distributions
◮ which plug together as in tree substitution grammar

• Tree fragment sets PA, A ∈ N are smallest sets satisfying:

PA =
⋃

A→B1...Bn∈RA

TreeA({B1} ∪ PB1
, . . . , {Bn} ∪ PBn

)

• Grammar’s distributions GA over TA defined using fragment
distributions FA over PA (generalized PCFG rules)

GA =
∑

�� PP

A

B1 Bn. . .

∈PA

FA(�� PP

A

B1 Bn. . .

) TD
�� PP

A

B1 Bn. . .

(GB1
, . . . , GBn

)

• A fragment grammar generates the distribution GS

73 / 76

Adaptive fragment distributions

• HA is a PCFG distribution over PA

HA =
∑

A→B1...Bn∈RA

θA→B1...Bn
TDA(η δB1

+ (1 − η)HB1
, . . .)

where η is the fragment exit probability

• Obtain FA by adapting the HA distribution

FA ∼ DP(αA, HA)

• This construction can be iterated, i.e., replace θ with another
fragment distribution

• Question: if we iterate this, when does the fixed point exist, and
what is it?

74 / 76

Outline

Probabilistic Context-Free Grammars

Chinese Restaurant Processes

Adaptor Grammars

Word segmentation with Adaptor Grammars

Bayesian inference for Adaptor Grammars

Extending Adaptor Grammars

Conclusion

75 / 76

Summary and future work

• Adaptor grammars “adapt” their distribution to the strings
they have generated

• They learn the probabilities of the subtrees of the adapted
nonterminals

• This makes adaptor grammars non-parametric; the subtrees
they cache depends on the data

• A variety of different linguistic phenomena can be described
with adaptor grammars

• Because they are grammars, they are easy to design and
compose

• The basic approach seems quite flexible
◮ many possible extensions of Adaptor Grammars

• MCMC sampling algorithm may not scale well to large data or
complicated grammars. Are there better estimators?

76 / 76

	Probabilistic Context-Free Grammars
	Chinese Restaurant Processes
	Adaptor Grammars
	Word segmentation with Adaptor Grammars
	Bayesian inference for Adaptor Grammars
	Extending Adaptor Grammars
	Conclusion

