
Learning rules with Adaptor Grammars

Mark Johnson

joint work with Sharon Goldwater and Tom Griffiths

May, 2008

1 / 84

The drunk under the lamppost

Late one night, a drunk guy is crawling around under a
lamppost. A cop comes up and asks him what he’s doing.

“I’m looking for my keys,” the drunk says. “I lost them
about three blocks away.”

“So why aren’t you looking for them where you dropped
them?” the cop asks.

The drunk looks at the cop, amazed that he’d ask so
obvious a question. “Because the light is better here.”

2 / 84

Ideas behind talk

• Most successful statistical learning methods are parametric

◮ PCFGs have one probability parameter per rule
◮ PCFG learning: given rules and data, learn rule

probabilities

• Non-parametric learning: learn parameters (rules) as well as
values

• Adaptor grammars:

◮ are a framework for specifying hierarchical nonparametric
Bayesian models

◮ can express a variety of linguistically-interesting structures
◮ are approximated by PCFGs, where number of rules

depends on data

3 / 84

Outline

Bayesian inference of multinomials

Inference of Probabilistic Context-Free Grammars

Limitations of PCFG learning

Chinese restaurant processes and Dirichlet processes

Adaptor grammars

Word segmentation using adaptor grammars

Bayesian inference of adaptor grammars

Conclusion

4 / 84

Language acquisition as Bayesian inference

P(Grammar | Data)
︸ ︷︷ ︸

Posterior

∝ P(Data | Grammar)
︸ ︷︷ ︸

Likelihood

P(Grammar)
︸ ︷︷ ︸

Prior

• Likelihood measures how well grammar describes data

• Prior expresses knowledge of grammar before data is seen

◮ can be very specific (e.g., Universal Grammar)
◮ can be very general (e.g., prefer shorter grammars)

• Posterior is distribution over grammars

◮ expresses uncertainty about which grammar is correct

• But: infinitely many grammars may be consistent with Data

5 / 84

Multinomial distributions and Dirichlet priors

• X follows a multinomial distribution if X ranges over 1, . . . , m
and P(X = k|θ) = θk

• Bayesian inference for θ: P(θ|X) ∝ P(X|θ)P(θ)
• A Dirichlet distribution P(θ|α) is a probability distribution

over multinomial parameters θ

◮ One Dirichlet parameter αk for each outcome k
• Dirichlets are conjugate prior for multinomials

◮ If prior is Dirichlet (α1, . . . , αk, . . . , αm) and we observe
data X = k, posterior is Dirichlet (α1, . . . , αk + 1, . . . , αm)

α = (2, 3)
α = (2, 2)
α = (1, 2)
α = (1, 1)

Probability θ1

P(θ1|α)

10.80.60.40.20

3

2

1

0

6 / 84

Conditional Dirichlet-multinomial distribution

• Suppose we don’t know θ, but only know Dirichlet prior α:

P(X = k | α) =

∫

P(X = k|θ) P(θ|α) dθ ∝ αk

• Suppose we observe X = (x1, . . . , xn). What is probability of
next outcome Xn+1?

P(Xn+1 = k | α, X) ∝ αk + nk(X)

where nk(X) is number of times k appears in X

• Example: coin with sides h, t. Prior αh = αt = 1. X = (t, h, t).
Posterior α′

h = 2, α′

t = 3, so P(X4 = h|α, X = (t, h, t)) = 2/5

7 / 84

Predicting a sequence of outcomes

• Given Dirichlet prior α and observations X, what is
probability of next two outcomes Xn+1 and Xn+2?

P(Xn+1 = k, Xn+2 = k′ | α, X)

= P(Xn+1 = k | α, X) P(Xn+2 = k′ | α, X, Xn+1 = k)

∝ (αk + nk(X)) (αk′ + nk′(X) + δk,k′)

i.e., the probability that Xn+2 = k′ is affected by value of Xn+1

⇒ The probability of each outcome type changes as we progress
through a sequence of outcomes

8 / 84

Outline

Bayesian inference of multinomials

Inference of Probabilistic Context-Free Grammars

Limitations of PCFG learning

Chinese restaurant processes and Dirichlet processes

Adaptor grammars

Word segmentation using adaptor grammars

Bayesian inference of adaptor grammars

Conclusion

9 / 84

Probabilistic context-free grammars

• Rules in Context-Free Grammars (CFGs) expand nonterminals
into sequences of terminals and nonterminals

• A Probabilistic CFG (PCFG) associates each nonterminal with
a multinomial distribution over the rules that expand it

• Probability of a tree is the product of the probabilities of the
rules used to construct it

Rule r θr Rule r θr

S → NP VP 1.0
NP → Sam 0.75 NP → Sandy 0.25
VP → barks 0.6 VP → snores 0.4

P







Sam

NP

S

VP

barks







= 0.45 P







Sandy

NP

S

VP

snores







= 0.1

10 / 84

Dirichlet priors on rule probabilities

• Prior P(θ) specifies probability of rule probabilities θ

• Conjugate prior is a product of Dirichlets (one for each
nonterminal)

• Prior has a parameter αA→β for each rule A → β

• Suppose we’re given prior α and observe parse trees parse trees
T = (T1, . . . , Tn). What is posterior P(θ | α, T)?

• P(θ|α, T) is a product of Dirichlets with parameters α
′, where:

α′

A→β = αA→β + nA→β(T)

and nA→β(T) is number of times A → β in T

In summary: α
′ = α + n(T)

⇒ Bayesian estimation is easy given visible data (parse trees) and
Dirichlet prior

11 / 84

Estimating θ from strings via Gibbs sampling

• Learning from terminal strings W ⇒ parse trees T are hidden
• No known closed form for posterior P(θ|α, W), but we can

approximate it by sampling
• Gibbs sampling is a Markov Chain Monte Carlo (MCMC)

method for sampling from P(X1, . . . , Xn)

initialize x1, . . . , xn somehow
repeat forever:

for i in 1, .., n:
set xi to a sample from P(Xi|X−i = x−i)

where X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn).
Under very general conditions, after “burn-in” this sequence of
samples has distribution P(X1, . . . , Xn)

• Example: to produce samples from P(X, Y), guess x, y, sample
X(1) from P(X|Y (0)), then sample Y (1) from P(Y |X), then X
from P(X|Y), then Y from P(Y |X), . . .

12 / 84

Bayes net representation of Bayesian PCFG

w1

. . .

wi

. . .

wn

.

. . .

.

. . .

αA|N|
αAj

t1

θA1 θAj

tn

ti

θA|N|

αA1

Terminal strings W

Rule probabilities θ

Prior α

Parse trees T

θA | αA ∼ Dir(αA) (θA are prob. of rules expanding A)
Ti | θ ∼ GS(θ) (Ti is parse tree for string Wi)

Wi | Ti = Yield(Ti)

13 / 84

A Gibbs sampler for trees and rule probabilities

• Generative model:

P(W , T , θ | α) = P(W | T) P(T | θ) P(θ | α)

• Dirichlet prior parameters α and strings W are given

• Rule probabilities θ and parse trees T are unknown

• Goal: estimate P(T , θ | α, W)

• Gibbs sampler iteration:

◮ sample θ from P(θ | T , α)

– i.e., sampling multinomials from Dirichlets

◮ sample T from P(T | W , θ)

– sampling parse tree Ti for string Wi given θ

– can be done in parallel for each string Wi

– O(|Wi|
3) dynamic programming algorithm

14 / 84

Integrating out the rule probabilities

• Posterior distribution P(θ | T , α) is Dirichlet with parameters
α

′ = α + n(T)

⇒ Can calculate conditional probability of next parse tree Tn

given previous parses T−n = (T1, . . . , Tn−1) and α

P(Tn | T−n, α) =

∫

P(Tn | θ) P(θ | T−n, α) dθ

= P(Tn | α
′) where α

′ = α + n(T−n)

⇒ Gibbs sampler with parse trees Ti as the n components
◮ requires sampling Ti from P(Ti | Wi, T−i, α)
◮ but calculating normalizing constant in

P(Ti | Wi, T−i, α) =
P(Ti | T−i, α)

∑

T :Yield(T)=Wi
P(T | T−i, α)

is hard!
15 / 84

Conditional parse probability in collapsed model

• Dirichlet prior on θ

⇒ probability of each rule expansion A → β ∝ αA→β

• Parse tree is a sequence of rule expansions
⇒ Update Dirichlet prior after each rule expansion
⇒ A’s expansion probabilities change each time A expands
⇒ A rule’s expansion “primes” its subsequent use

S

NP

DT

a

NN

cat

VP

VBD

chased

NP

DT

a

NN

dog

This expansion

increases this
expansion’s
probability

• A rule’s probability depends on which rules were used earlier
⇒ no dynamic programming algorithms
⇒ no efficient way of calculating normalizing constant

16 / 84

A Metropolis-within-Gibbs sampler for trees

• Metropolis “accept/reject” sampling procedures only require
“unnormalized” probabilities

• But they require a proposal distribution that is
◮ easy to sample from, and
◮ not too different from true distribution

• Proposal distribution for P(Ti | α, T−i, Wi) is PCFG with rule
probabilities

θ′A→β ∝ αA→β + nA→β(T−i)

• Metropolis-within-Gibbs sampling algorithm:

repeat forever:
for i in 1, .., n:

compute proposal PCFG prob. θ
′ from α + n(T−i)

sample parse tree T ⋆ from P(T |Wi, θ
′)

compute “true” probability P(T ⋆|α, T−i)
Metropolis accept/reject T ⋆ as new value for Ti

17 / 84

Outline

Bayesian inference of multinomials

Inference of Probabilistic Context-Free Grammars

Limitations of PCFG learning

Chinese restaurant processes and Dirichlet processes

Adaptor grammars

Word segmentation using adaptor grammars

Bayesian inference of adaptor grammars

Conclusion

18 / 84

Learning syntactic structure is hard

• Bayesian PCFG estimation works well on toy data

• Results are disappointing on “real” data

◮ wrong rules?
◮ rules need to be given a priori; can we learn them too?

• Strategy: study simpler cases

◮ Morphological segmentation (e.g., walking = walk+ing)
◮ Word segmentation of unsegmented utterances

19 / 84

A CFG for stem-suffix morphology
Word → Stem Suffix Chars → Char
Stem → Chars Chars → Char Chars
Suffix → Chars Char → a | b | c | . . .

Word

Stem

Chars

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

• Grammar’s trees can represent
any segmentation of words into
stems and suffixes

⇒ Can represent true segmentation

• But grammar’s units of
generalization (PCFG rules) are
“too small” to learn morphemes

20 / 84

A “CFG” with one rule per possible morpheme

Word → Stem Suffix
Stem → all possible stems
Suffix → all possible suffixes

Word

Stem

t a l k

Suffix

i n g #

Word

Stem

j u m p

Suffix

#

• A rule for each morpheme
⇒ “PCFG” can represent probability of each morpheme

• Unbounded number of possible rules, so this is not a PCFG
◮ not a practical problem, as only a finite set of rules could

possibly be used in any particular data set

21 / 84

Maximum likelihood estimate for θ is trivial

• Maximum likelihood selects θ that minimizes KL-divergence
between model and training data W distributions

• Saturated model in which each word is generated by its own rule
replicates training data distribution W exactly

⇒ Saturated model is maximum likelihood estimate

• Maximum likelihood estimate does not find any suffixes

Word

Stem

t a l k i n g

Suffix

#

22 / 84

Forcing generalization via sparse Dirichlet priors

• Idea: use Bayesian prior that prefers fewer rules
• Set of rules is fixed a priori in Bayesian PCFGs,

but can “turn rule off” by setting θA→β ≈ 0
• Dirichlet prior with αA→β ≈ 0 prefers θA→β ≈ 0

α = (0.1, 1)
α = (0.2, 1)
α = (0.5, 1)

α = (1, 1)

Probability θ1

P(θ1|α)

10.80.60.40.20

5

4

3

2

1

0

23 / 84

Morphological segmentation experiment

• Trained on orthographic verbs from U Penn. Wall Street
Journal treebank

• Uniform Dirichlet prior prefers sparse solutions as α → 0

• Metropolis-within-Gibbs sampler used to sample from posterior
distribution of parses

◮ reanalyses each word based on a grammar estimated from
the parses of the other words

24 / 84

Posterior samples from WSJ verb tokens
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect expect

expects expects expects expects

expected expected expected expected

expecting expect ing expect ing expect ing

include include include include

includes includes includ es includ es

included included includ ed includ ed

including including including including

add add add add

adds adds adds add s

added added add ed added

adding adding add ing add ing

continue continue continue continue

continues continues continue s continue s

continued continued continu ed continu ed

continuing continuing continu ing continu ing

report report report report

reports report s report s report s

25 / 84

Log posterior of models on token data

Posterior
True suffixes
Null suffixes

Dirichlet prior parameter α

log Pα

11e-101e-20

-800000

-1e+06

-1.2e+06

• Correct solution is nowhere near as likely as posterior

⇒ model is wrong!

26 / 84

Independence assumptions in PCFGs

• Context-free grammars are “context-free” because the possible
expansions of each node do not depend on expansions of other
nodes

• Probabilistic CFGs extend this by requiring each node
expansion to be statistically independent (conditioned on the
node’s label)

• This is a very strong assumption, which is often false!

• Morphology grammar contains rule:

Word → Stem Suffix

• Corresponding independence assumption:

P(Word) = P(Stem) P(Suffix)

causes PCFG model of morphology to fail

27 / 84

Relative frequencies of inflected verb forms

28 / 84

Types and tokens

• A word type is a distinct word shape

• A word token is an occurrence of a word

Data = “the cat chased the other cat”

Tokens = “the”, “cat”, “chased”, “the”, “other”, “cat”

Types = “the”, “cat”, “chased”, “other”

• Estimating θ from word types rather than word tokens
eliminates (most) frequency variation

◮ 4 common verb suffixes, so when estimating from verb
types θSuffix→i n g # ≈ 0.25

• Several psycholinguists believe that humans learn morphology
from word types

• Goldwater et al investigated a morphology-learning model that
learnt from an interpolation of types and tokens

29 / 84

Posterior samples from WSJ verb types
α = 0.1 α = 10−5 α = 10−10 α = 10−15

expect expect expect exp ect

expects expect s expect s exp ects

expected expect ed expect ed exp ected

expect ing expect ing expect ing exp ecting

include includ e includ e includ e

include s includ es includ es includ es

included includ ed includ ed includ ed

including includ ing includ ing includ ing

add add add add

adds add s add s add s

add ed add ed add ed add ed

adding add ing add ing add ing

continue continu e continu e continu e

continue s continu es continu es continu es

continu ed continu ed continu ed continu ed

continuing continu ing continu ing continu ing

report report repo rt rep ort

reports report s repo rts rep orts

30 / 84

Log posterior of models on type data

Optimal suffixes
True suffixes
Null suffixes

Dirichlet prior parameter α

log Pα

11e-101e-20

0

-200000

-400000

• Correct solution is close to optimal at α = 10−3

31 / 84

Desiderata for an extension of PCFGs

• PCFG rules are “too small” to be effective units of
generalization
⇒ generalize over groups of rules
⇒ units of generalization should be chosen based on data

• Type-based inference mitigates non-context-free dependencies
⇒ Hierarchical Bayesian model where:

◮ context-free rules generate types
◮ another process replicates types to produce tokens

• Adaptor grammars:

◮ learn probability of entire subtrees (how a nonterminal
expands to terminals)

◮ use grammatical hierarchy to define a Bayesian hierarchy,
from which type-based inference emerges

32 / 84

Outline

Bayesian inference of multinomials

Inference of Probabilistic Context-Free Grammars

Limitations of PCFG learning

Chinese restaurant processes and Dirichlet processes

Adaptor grammars

Word segmentation using adaptor grammars

Bayesian inference of adaptor grammars

Conclusion

33 / 84

Dirichlet-Multinomials with many outcomes

• Dirichlet prior α, observed data X = (X1, . . . , Xn)

P(Xn+1 = k | X, α) ∝ αk + nk(X)

• Consider a sequence of Dirichlet-multinomials where:
◮ total Dirichlet pseudocount is fixed α• =

∑m

k=1 αk, and
◮ prior uniform over outcomes 1, . . . , m, so αk = α•/m
◮ number of outcomes m → ∞

P(Xn+1 = k | X, α•) ∝







nk(X) if nk(X) > 0

α•/m if nk(X) = 0

But when m ≫ n, most k are unoccupied (i.e., nk(X) = 0)

⇒ Probability of a previously seen outcome k ∝ nk(X)
Probability of an outcome never seen before ∝ α•

34 / 84

The Chinese restaurant process (1)

&%
'$

α

&%
'$

&%
'$

&%
'$

• Each “table” seats infinite number of “customers” (samples)

• Customer n + 1 enters with tables 1, . . . , m occupied:

◮ sits at old table k ≤ m with probability ∝ nk

◮ sits at new table k = m + 1 with probability ∝ α

⇒ “Rich get richer” power-law dynamics

35 / 84

The Chinese restaurant process (2)

&%
'$

1

y
&%
'$

α

&%
'$

&%
'$

• Each “table” seats infinite number of “customers” (samples)

• Customer n + 1 enters with tables 1, . . . , m occupied:

◮ sits at old table k ≤ m with probability ∝ nk

◮ sits at new table k = m + 1 with probability ∝ α

⇒ “Rich get richer” power-law dynamics

36 / 84

The Chinese restaurant process (3)

&%
'$

2

y y
&%
'$

α

&%
'$

&%
'$

• Each “table” seats infinite number of “customers” (samples)

• Customer n + 1 enters with tables 1, . . . , m occupied:

◮ sits at old table k ≤ m with probability ∝ nk

◮ sits at new table k = m + 1 with probability ∝ α

⇒ “Rich get richer” power-law dynamics

37 / 84

The Chinese restaurant process (4)

&%
'$

2

y y
&%
'$

1

y
&%
'$

α

&%
'$

• Each “table” seats infinite number of “customers” (samples)

• Customer n + 1 enters with tables 1, . . . , m occupied:

◮ sits at old table k ≤ m with probability ∝ nk

◮ sits at new table k = m + 1 with probability ∝ α

⇒ “Rich get richer” power-law dynamics

38 / 84

The Chinese restaurant process (5)

&%
'$

3

y yy
&%
'$

1

y
&%
'$

α

&%
'$

• Each “table” seats infinite number of “customers” (samples)

• Customer n + 1 enters with tables 1, . . . , m occupied:

◮ sits at old table k ≤ m with probability ∝ nk

◮ sits at new table k = m + 1 with probability ∝ α

⇒ “Rich get richer” power-law dynamics

39 / 84

Labeled Chinese restaurant processes (1a)

&%
'$

α

&%
'$

&%
'$

&%
'$

Generated sequence:

• Each occupied table has a label (a “dish”)
• The labels Y are sampled from PG(Y)
• Customer n + 1 enters with tables 1, . . . , m occupied:

◮ sits at old table k ≤ m with probability ∝ nk

◮ sits at new table k = m + 1 with probability ∝ α
• Emit label (dish) on table

◮ if table doesn’t have a label, generate one from PG(Y)
⇒ only pay probability cost for label once per table

40 / 84

Labeled Chinese restaurant processes (1b)

&%
'$

dog

PG(dog)

y
&%
'$

&%
'$

&%
'$

Generated sequence: dog

• Each occupied table has a label (a “dish”)
• The labels Y are sampled from PG(Y)
• Customer n + 1 enters with tables 1, . . . , m occupied:

◮ sits at old table k ≤ m with probability ∝ nk

◮ sits at new table k = m + 1 with probability ∝ α
• Emit label (dish) on table

◮ if table doesn’t have a label, generate one from PG(Y)
⇒ only pay probability cost for label once per table

41 / 84

Labeled Chinese restaurant processes (2a)

&%
'$

dog

1

y
&%
'$

α

&%
'$

&%
'$

Generated sequence: dog

• Each occupied table has a label (a “dish”)
• The labels Y are sampled from PG(Y)
• Customer n + 1 enters with tables 1, . . . , m occupied:

◮ sits at old table k ≤ m with probability ∝ nk

◮ sits at new table k = m + 1 with probability ∝ α
• Emit label (dish) on table

◮ if table doesn’t have a label, generate one from PG(Y)
⇒ only pay probability cost for label once per table

42 / 84

Labeled Chinese restaurant processes (2b)

&%
'$

dog

y
&%
'$

cat

PG(cat)

y
&%
'$

&%
'$

Generated sequence: dog, cat

• Each occupied table has a label (a “dish”)
• The labels Y are sampled from PG(Y)
• Customer n + 1 enters with tables 1, . . . , m occupied:

◮ sits at old table k ≤ m with probability ∝ nk

◮ sits at new table k = m + 1 with probability ∝ α
• Emit label (dish) on table

◮ if table doesn’t have a label, generate one from PG(Y)
⇒ only pay probability cost for label once per table

43 / 84

Labeled Chinese restaurant processes (3a)

&%
'$

dog

1

y
&%
'$

cat

1

y
&%
'$

α

&%
'$

Generated sequence: dog, cat

• Each occupied table has a label (a “dish”)
• The labels Y are sampled from PG(Y)
• Customer n + 1 enters with tables 1, . . . , m occupied:

◮ sits at old table k ≤ m with probability ∝ nk

◮ sits at new table k = m + 1 with probability ∝ α
• Emit label (dish) on table

◮ if table doesn’t have a label, generate one from PG(Y)
⇒ only pay probability cost for label once per table

44 / 84

Labeled Chinese restaurant processes (3b)

&%
'$

dog

y y
&%
'$

cat

y
&%
'$

&%
'$

Generated sequence: dog, cat, dog

• Each occupied table has a label (a “dish”)
• The labels Y are sampled from PG(Y)
• Customer n + 1 enters with tables 1, . . . , m occupied:

◮ sits at old table k ≤ m with probability ∝ nk

◮ sits at new table k = m + 1 with probability ∝ α
• Emit label (dish) on table

◮ if table doesn’t have a label, generate one from PG(Y)
⇒ only pay probability cost for label once per table

45 / 84

From Chinese restaurants to Dirichlet processes

• Chinese restaurant processes map a distribution PG to a stream
of samples from a different distribution with the same support

• CRPs specify the conditional distribution of the next outcome
given the previous ones

• Each CRP run can produce a different distribution over labels

• It defines a mapping from α and PG to a distribution over
distributions DP(α, PG)

• DP(α, PG) is called a Dirichlet process (DP) with concentration
parameter α and base distribution PG

• The base distribution PG can itself be a DP ⇒ hierarchy of DPs

46 / 84

Nonparametric extensions of PCFGs

• Chinese restaurant processes are a nonparametric extension of
Dirichlet-multinomials because the number of states (occupied
tables) depends on the data

• Two obvious nonparametric extensions of PCFGs:

◮ let the number of nonterminals grow unboundedly

– refine the nonterminals of an original grammar
e.g., S35 → NP27 VP17

⇒ infinite PCFG

◮ let the number of rules grow unboundedly

– “new” rules are compositions of several rules from
original grammar

– equivalent to caching tree fragments
⇒ adaptor grammars

• No reason both can’t be done together . . .

47 / 84

Outline

Bayesian inference of multinomials

Inference of Probabilistic Context-Free Grammars

Limitations of PCFG learning

Chinese restaurant processes and Dirichlet processes

Adaptor grammars

Word segmentation using adaptor grammars

Bayesian inference of adaptor grammars

Conclusion

48 / 84

Adaptor grammars: informal description

• An adaptor grammar has a set of CFG rules

• These determine the possible structures as in a CFG

• A subset of the nonterminals are adapted

• Unadapted nonterminals expand by picking a rule and
recursively expanding its children, as in a PCFG

• Adapted nonterminals can expand in two ways:

◮ by picking a rule and recursively expanding its children, or
◮ by generating a previously generated tree (with probability

proportional to the number of times previously generated)

• Each adapted subtree behaves like a new rule added to the
grammar

• The CFG rules of the adapted nonterminals determine the base
distribution over these trees

49 / 84

Adaptor grammars as generative processes

• The sequence of trees generated by an adaptor grammar are not
independent

◮ it learns from the trees it generates
◮ if an adapted subtree has been used frequently in the past,

it’s more likely to be used again

• (but the sequence of trees is exchangable)

• An unadapted nonterminal A expands using A → β with
probability θA→β

• An adapted nonterminal A expands:

◮ to a subtree τ rooted in A with probability proportional to
the number of times τ was previously generated

◮ using A → β with probability proportional to αAθA→β

50 / 84

Adaptor grammar morphology example

Word

Stem

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

#

Word → Stem Suffix

Stem → # Chars

Suffix → #

Suffix → Chars #

Chars → Char

Chars → Char Chars

Char → a | . . . | z

• Stem and Suffix rules generate all possible stems and suffixes

• Adapt Word, Stem and Suffix nonterminals

• One Chinese Restaurant process per adapted nonterminal

51 / 84

Morphology adaptor grammar (0)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Stem restaurant

Stem → #
Stem → #Chars

Suffix restaurant

Suffix → #
Suffix → Chars #

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z
52 / 84

Morphology adaptor grammar (1a)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

•

Stem restaurant

Stem → #
Stem → #Chars

Suffix restaurant

Suffix → #
Suffix → Chars #

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z
53 / 84

Morphology adaptor grammar (1b)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

•

Stem restaurant

Stem → #
Stem → #Chars •

Suffix restaurant

Suffix → #
Suffix → Chars # •
Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z
54 / 84

Morphology adaptor grammar (1c)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•
Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z
55 / 84

Morphology adaptor grammar (1d)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•
Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z
56 / 84

Morphology adaptor grammar (2a)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z
57 / 84

Morphology adaptor grammar (2b)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

•

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

58 / 84

Morphology adaptor grammar (2c)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

•

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

59 / 84

Morphology adaptor grammar (2d)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

•

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

60 / 84

Morphology adaptor grammar (3)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

•

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

•

61 / 84

Morphology adaptor grammar (4a)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

•

•

Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

•

62 / 84

Morphology adaptor grammar (4b)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

•

•

•

•

•
Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

•

•

63 / 84

Morphology adaptor grammar (4c)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

Suffix

#

•

•

•

•

•
Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

•

•

64 / 84

Morphology adaptor grammar (4d)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → #Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars #

Suffix

Char

s

#

Suffix

#

•

•

•

Word

Stem

Chars

b u y

Suffix

#

•

•
Chars factory

Chars → Char
Chars → Char Chars

Char → a . . . z

•

•

•

65 / 84

Properties of adaptor grammars

• Possible trees generated by CFG rules
but the probability of each adapted tree is estimated separately

• Probability of a subtree τ is proportional to:

◮ the number of times τ was seen before
⇒ “rich get richer” dynamics (Zipf distributions)

◮ plus αA times prob. of generating it via PCFG expansion

⇒ Useful compound structures can be more probable than their
parts

• PCFG rule probabilities estimated from table labels
⇒ learns from types, not tokens
⇒ dampens frequency variation

66 / 84

Bayesian hierarchy inverts grammatical hierarchy

• Grammatically, a Word is composed
of a Stem and a Suffix, which are
composed of Chars

• To generate a new Word from an
adaptor grammar

◮ reuse an old Word, or
◮ generate a fresh one from the

base distribution, i.e., generate
a Stem and a Suffix

• Lower in the tree
⇒ higher in Bayesian hierarchy

Word

Stem

Chars

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

67 / 84

PCFGs as recursive mixtures
For simplicity assume all rules are of the form A → B C or A → w,
where A, B, C ∈ N (nonterminals) and w ∈ T (terminals).
Each nonterminal A ∈ N generates a distribution GA over the trees
rooted in A.

GA =
∑

A→B C∈RA

θA→B CTreeA(GB, GC) +
∑

A→w∈RA

θA→wTreeA(w)

where TreeA(w) puts all of its mass on the tree with child w and
TreeA(P, Q) is the distribution over trees rooted in A with children
distributed according to P and Q respectively.

TreeA(P, Q)

(

�� PP

A

t1 t2

)

= P (t1) Q(t2)

The tree language generated by the PCFG is GS.

68 / 84

Adaptor grammars as recursive mixtures
An adaptor grammar (G, θ, α) is a PCFG (G, θ) together with a
parameter vector α where for each A ∈ N , αA is the parameter of
the Dirichlet process associated with A.

GA ∼ DP(αA, HA) if αA > 0

= HA if αA = 0

HA =
∑

A→B C∈RA

θA→B CTreeA(GB, GC) +
∑

A→w∈RA

θA→wTreeA(w)

The grammar generates the distribution GS.
There is one Dirichlet Process for each non-terminal A where
αA > 0. Its base distribution HA is a mixture of the language
generated by the Dirichlet processes associated with other
non-terminals.

69 / 84

Bayesian priors on adaptor grammar parameters

• Parameters of adaptor grammars:

◮ probabilities θA→β of base grammar rules A → β
◮ concentration parameters αA of adapted nonterminals A

• Put Bayesian priors on these parameters

◮ (Uniform) Dirichlet prior on base grammar rule
probabilities θ

◮ Vague Gamma prior on concentration parameter on αA

• We also use a generalization of CRPs called “Pitman-Yor
processes”, and put a uniform Dirichlet prior on its a parameter

70 / 84

Outline

Bayesian inference of multinomials

Inference of Probabilistic Context-Free Grammars

Limitations of PCFG learning

Chinese restaurant processes and Dirichlet processes

Adaptor grammars

Word segmentation using adaptor grammars

Bayesian inference of adaptor grammars

Conclusion

71 / 84

Unigram model of word segmentation

• Unigram model: each word is generated independently

• Input is unsegmented broad phonemic transcription (Brent)
Example: y u w a n t t u s i D 6 b u k

• Adaptor for Word non-terminal caches previously seen words

Words → Word+

Word → Phoneme+

Words

Word

y u

Word

w a n t

Word

t u

Word

s i

Word

D 6

Word

b U k

Words

Word

h & v

Word

6

Word

d

Word

r I N k

• Unigram word segmentation on Brent corpus: 55% token f-score
72 / 84

Unigram model often finds collocations

• Unigram word segmentation model assumes each word is
generated independently

• But there are strong inter-word dependencies (collocations)

• Unigram model can only capture such dependencies by
analyzing collocations as words

Words

Word

t e k

Word

D 6 d O g i

Word

Q t

Words

Word

y u w a n t t u

Word

s i D 6

Word

b U k

73 / 84

Unigram word segmentation grammar learnt

• Based on the base grammar rules

Words → Word+

Word → Phoneme+

the adapted grammar contains 1,712 rules such as:

15758 Words → Word Words
9791 Words → Word
1660 Word → Phoneme+

402 Word → y u
137 Word → I n
111 Word → w I T
100 Word → D 6 d O g i
45 Word → I n D 6
20 Word → I n D 6 h Q s

74 / 84

Modeling collocations improves segmentation

Sentence → Colloc+

Colloc → Word+

Word → Phoneme⋆

Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

• A Colloc(ation) consists of one or more words
• Both Words and Collocs are adapted (learnt)
• Significantly improves word segmentation accuracy over

unigram model (75% token f-score; same as Goldwater’s bigram
model)

• Two levels of Collocations improves slighly (76%) 75 / 84

Syllables + Collocations + Word segmentation

Sentence → Colloc+ Colloc → Word+

Word → SyllableIF Word → SyllableI SyllableF
Word → SyllableI Syllable SyllableF Syllable → (as before)

Sentence

Colloc

Word

OnsetI

h

Nucleus

&

CodaF

v

Colloc

Word

Nucleus

6

Word

OnsetI

d r

Nucleus

I

CodaF

N k

• Word segmentation f-score = 68%
• With 2 Collocation levels f-score = 84% (better than

Colloc+morphology)
• Without distinguishing initial/final clusters f-score = 82%

76 / 84

Syllables + 2-level Collocations + Word

segmentation

Sentence

Colloc2

Colloc

Word

OnsetI

g

Nucleus

I

CodaF

v

Word

OnsetI

h

Nucleus

I

CodaF

m

Colloc

Word

Nucleus

6

Word

OnsetI

k

Nucleus

I

CodaF

s

Colloc2

Colloc

Word

Nucleus

o

Word

OnsetI

k

Nucleus

e

77 / 84

Word segmentation results summary

Collocation levels
0 1 2 3

word 0.55 0.73 0.75 0.72
morphology 0.35 0.55 0.79 0.73
syllable 0.32 0.69 0.82 0.79
syllableIF 0.46 0.68 0.84 0.84

• We can learning collocations and syllable structure together
with word segmentation, even though we don’t know where the
word boundaries are

• Learning these together improves word segmentation accuracy

◮ are there other examples of synergistic interaction in
language learning?

78 / 84

Outline

Bayesian inference of multinomials

Inference of Probabilistic Context-Free Grammars

Limitations of PCFG learning

Chinese restaurant processes and Dirichlet processes

Adaptor grammars

Word segmentation using adaptor grammars

Bayesian inference of adaptor grammars

Conclusion

79 / 84

Estimating adaptor grammars

• Need to estimate:
◮ table labels (subtrees) τ and customer count for each table
◮ (optional) probabilities of base grammar productions
◮ (optional) DP parameters α

• Component-wise Metropolis-within-Gibbs sampler
◮ ith component is the parse tree Ti for input string Wi

◮ sample parse Ti for Wi using grammar G′(T−i) estimated
from parses T−i for other inputs

• Sampling directly from conditional distribution of parses seems
intractable

◮ construct PCFG proposal grammar G′(T−i) on the fly
◮ each table label τ corresponds to a production in PCFG

approximation
◮ Use accept/reject to convert samples from PCFG approx

to samples from adaptor grammar
80 / 84

PCFG proposal grammar

• Recall that in a CRP,

◮ picking existing table τ with prob. ∝ nτ (number of
customers seated at τ)

◮ picking new table with prob. ∝ α (DP concentration
parameter)

• Rules of PCFG proposal grammar G′ consist of:

◮ rules A → β from base PCFG: θ′A→β ∝ αAθA→β

◮ A rule A → Yield(τ) for each table τ in A’s restaurant:
θ′

A→Yield(τ)
∝ nτ , the number of customers at table τ

• Parses of G′ can be mapped back to adaptor grammar parses

81 / 84

Implementation details

• The sampler just described can take a long time to “burn in”

• It’s hard to predict when annealing will help

• Resampling the table labels (after each pass through the
sentences) dramatically increases mobility

◮ makes it possible to reanalyse many sentences at once

82 / 84

Outline

Bayesian inference of multinomials

Inference of Probabilistic Context-Free Grammars

Limitations of PCFG learning

Chinese restaurant processes and Dirichlet processes

Adaptor grammars

Word segmentation using adaptor grammars

Bayesian inference of adaptor grammars

Conclusion

83 / 84

Summary and future work

• Adaptor grammars “adapt” their distribution to the strings
they have generated

• They learn the probabilities of the subtrees of the adapted
nonterminals

• This makes adaptor grammars non-parametric; the number of
subtrees they track depends on the data

• A variety of different linguistic phenomena can be described
with adaptor grammars

• Because they are grammars, they are easy to design and
compose

• But they still have a “context-freeness” that makes it impossible
to express e.g., Goldwater’s bigram word segmentation model.
Can we add context-sensitivity in a manageable way?

• The MCMC sampling algorithm used does not seem to scale
well to large data or complicated grammars. Are there better
estimators?

84 / 84

	Bayesian inference of multinomials
	Inference of Probabilistic Context-Free Grammars
	Limitations of PCFG learning
	Chinese restaurant processes and Dirichlet processes
	Adaptor grammars
	Word segmentation using adaptor grammars
	Bayesian inference of adaptor grammars
	Conclusion

