
Where do the rules come from?

Mark Johnson

joint work with Tom Griffiths and Sharon Goldwater

April, 2008

1 / 70

Outline

Introduction

Probabilistic context-free grammars and beyond

Learning structure in the acquisition of morphology and the lexicon

Adaptor grammars

Adaptor grammars for agglutinative morphology

Word segmentation using adaptor grammars

Conclusions

Technical details of adaptor grammars

2 / 70

Why probabilistic models?

• Computational linguistics studies the computational aspects of
linguistic processes (comprehension, generation, parsing)

• Distributional evidence is very useful; people are exquisitely
sensitive to it

• Algorithms are specifications of computational processes, but
aren’t always the best way of understanding them

• Probabilistic models abstract away from algorithms, and describe
the dependencies between different types of information

◮ mathematical theory e.g., about how to compose multiple
probabilistic models

◮ same model implemented by many different algorithms
(often making different assumptions)

3 / 70

The big question

• How do we come to know so much about the languages we speak?

1. We learn it somehow
2. It’s innate

Obviously some combination of both is involved, but what exactly?

• Do recent advances in statistical learning have anything to add?

◮ Currently most statistical learning is parameter setting
◮ Learning structure or the rules that generate it is much harder
◮ Nonparametric Bayesian techniques offer new ways of

understanding structure learning
◮ Eventually may be able to quantitatively measure information

contained in different aspects of input
and show it does (not) suffice for learning structures we find
in human languages

4 / 70

Chomskyian linguists ought to be Bayesians

• Bayes rule combines prior knowledge with likelihood

P(Hypothesis|Data)
︸ ︷︷ ︸

Posterior

∝ P(Data|Hypothesis)
︸ ︷︷ ︸

Likelihood

P(Hypothesis)
︸ ︷︷ ︸

Prior

• Bayesian priors can incorporate detailed linguistic information
◮ Heads are all at the left edge or at the right edge of phrases
◮ Words consist of bimoraic feet

but need not
◮ Prefer grammars with fewer/shorter rules/lexical entries

• A prior can encode both inviolable constraints and “soft”
markedness preferences

◮ bias learner toward universal tendancies, while permitting
(high-frequency) exceptions

• Choice of prior (“universal grammar”) is a linguistic question
• Potentially can measure contribution of prior to language learning

◮ how much information do putative universals contain?
5 / 70

Statistical learning as parametric optimization

• Statistical learning is usually successful to the extent it can be
reduced to a parameter optimization problem

◮ model has finite number of adjustable parameters
◮ adjust parameters to maximize model’s fit to training data
◮ (can be done on a scale far larger than anyone imagined,

but most effective on supervised training data)

• Learning possible structures (or the rules that generate them) can
be reduced to parameter estimation as follows:

1. generate a set of possible rules somehow
2. use a parameter estimator to estimate each rule’s utility
3. prune the useless rules, and repeat if desired

• Nonparametric Bayes offers a principled way of integrating rule
generation and parameter estimation

6 / 70

Adaptor grammars

• “Nonparametric” means “not characterized by a fixed number of
parameters”

• Adaptor grammars can be viewed as an extension of PCFGs that
permit an unbounded number of potential rules

◮ Any finite set of trees (e.g., sample parses for a corpus) can
only use a finite number of them
⇒ MCMC sampling algorithms for learning

◮ c.f., iPCFGs, which extend PCFGs by permitting an
unbounded number of nonterminals

• Adaptor grammars can express linguistically interesting
nonparametric models

◮ we’ll look at several models of word segmentation
◮ and show that those that simultaneously learn syllable

structure do better (synergy in acquisition)

7 / 70

Outline

Introduction

Probabilistic context-free grammars and beyond

Learning structure in the acquisition of morphology and the lexicon

Adaptor grammars

Adaptor grammars for agglutinative morphology

Word segmentation using adaptor grammars

Conclusions

Technical details of adaptor grammars

8 / 70

Probabilistic context-free grammars

• Context-Free Grammars (CFGs) provide rules (building blocks) for
constructing phrases and sentences

• In a Probabilistic CFG (PCFG), each rule has a probability

• Probability of a tree is the product of the probabilities of the rules
used to construct it

Rule r θr Rule r θr

S → NP VP 1.0
NP → Hillary 0.75 NP → Barack 0.25
VP → barks 0.6 VP → snores 0.4

P






barksHillary

NP

S

VP




 = 0.45 P






snoresBarack

NP

S

VP




 = 0.1

9 / 70

Learning probabilistic context-free grammars

• Well-understood methods for statistical (Bayesian) estimation of
PCFG rule probabilities

• These methods generalize to:

◮ learning from words alone (unsupervised learning)
◮ learning parametric grammars (e.g., X ′ grammars)
◮ are efficient enough to learn from large amounts of data

• These learning procedures do really well on toy examples

• Unfortunately they do very poorly on real linguistic input

10 / 70

Unsupervised induction of PCFGs produces poor

structures

• Learning procedures function by maximizing training data likelihood

• Higher likelihood 6⇒ more accurate parses
⇒ model is wrong

• What could be wrong?

◮ Wrong grammar (Klein and Manning, Smith and Eisner)
◮ Ignoring useful information in input (Yang)
◮ Grammar ignores semantics (Zettlemoyer and Collins)

⇒ Develop models of syntax/semantics mapping, e.g., from sentences
to (non-linguistic) contexts

⇒ Study simpler learning problems that we know humans solve
and try to understand what goes wrong

11 / 70

Outline

Introduction

Probabilistic context-free grammars and beyond

Learning structure in the acquisition of morphology and the lexicon

Adaptor grammars

Adaptor grammars for agglutinative morphology

Word segmentation using adaptor grammars

Conclusions

Technical details of adaptor grammars

12 / 70

Learning agglutinative morphology

• Words consist of sequence of morphemes
e.g., talk + ing, jump + s, etc.

• Given unanalyzed words as input training data,
want to learn a grammar that:

◮ generates words as a sequence of morphemes, and
◮ correctly generates novel morphogical combinations not seen

in training data

• Training data: sequences of characters, e.g., t a l k i n g

• Where we’re going:

◮ CFGs are good ways of generating potentially useful structures
◮ but PCFGs are not good models of a structure’s probability
◮ Dependencies (generalizations) involve substructures, but

we don’t know the relevant structures in advance

13 / 70

A CFG for stem-suffix morphology
Word → Stem Suffix Chars → Char

Stem → Chars Chars → Char Chars

Suffix → Chars Char → a | b | c | . . .
Word

Stem

Chars

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

Chars

Char

#

• Grammar generates acceptable
structures

• But its units of generalization
(PCFG rules) are “too small” to
learn morphemes

14 / 70

A “CFG” with one rule per possible morpheme

Word → Stem Suffix

Stem → all possible stems
Suffix → all possible suffixes

Word

Stem

t a l k

Suffix

i n g #

Word

Stem

j u m p

Suffix

#

• A rule for each morpheme
⇒ “PCFG” can represent probability of each morpheme

• Unbounded number of possible rules, so this is not a PCFG
◮ Interestingly this is not a practical problem, as only a finite set

of rules could possibly be used in any particular data set

15 / 70

Independence assumptions in PCFGs

• Context-free grammars are “context-free” because the possible
expansions of each node do not depend on expansions of other
nodes

• Probabilistic CFGs extend this by requiring each node expansion to
be statistically independent (conditioned on the node’s label)

• This is a very strong assumption, which is often false!

• Morphology grammar:

Word → Stem Suffix

Corresponding independence assumption:

P(Word) = P(Stem)P(Suffix)

Causes PCFG model of morphology to fail

16 / 70

Learning English verbal morphology

Training data is a sequence of verbs, e.g.
D = (#talking#, #jump#, . . .)
Our goal is to infer trees such as:

Word

Stem

t a l k

Suffix

i n g #

Word

Stem

j u m p

Suffix

#

Word → Stem Suffix

Stem → w w ∈ T
Suffix → w w ∈ F

where T is the set of all prefixes of words in D and F is the set of all
suffixes of words in D

17 / 70

Maximum likelihood estimate for θ is trivial

• Maximum likelihood selects θ that minimizes KL-divergence
between model and data distributions

• Saturated model with θSuffix → # = 1 generates training data
distribution D exactly

• Saturated model is maximum likelihood estimate

• Maximum likelihood estimate does not find any suffixes

Word

Stem

t a l k i n g

Suffix

#

18 / 70

Bayesian estimation

P(Hypothesis|Data)
︸ ︷︷ ︸

Posterior

∝ P(Data|Hypothesis)
︸ ︷︷ ︸

Likelihood

P(Hypothesis)
︸ ︷︷ ︸

Prior

• Priors can be sensitive to linguistic structure (e.g., a word should
contain a vowel)

• Priors can encode linguistic universals and markedness preferences
(e.g., complex clusters appear at word onsets)

• Priors can prefer sparse solutions

• The choice of the prior is as much a linguistic issue as the design
of the grammar!

19 / 70

Dirichlet priors and sparse solutions

• The probabilities θA → β of choosing productions A → β to
expand nonterminal A define multinomial distributions

• Dirichlet distributions are the conjugate priors to multinomials

P(θA → β1
, . . . , θA → βn

) ∝

n∏

i=1

θA → βi

α−1 α > 0

α = 2.0
α = 1.0
α = 0.5
α = 0.1

Binomial probability θ

Pα(θ)

10.80.60.40.20

3

2

1

0

• There are MCMC algorithms for sampling from the posterior
distribution of trees given strings D

20 / 70

Morphological segmentation experiment

• Trained on orthographic verbs from U Penn. Wall Street Journal
treebank

• Dirichlet prior prefers sparse solutions (sparser solutions as α → 0)

• MCMC Sampler used to sample from posterior distribution of
parses

◮ reanalyses each word based on a grammar estimated from the
parses of the other words

21 / 70

Posterior samples from WSJ verb tokens
α = 0.1 α = 10−5

α = 10−10
α = 10−15

expect expect expect expect
expects expects expects expects

expected expected expected expected
expecting expect ing expect ing expect ing

include include include include
includes includes includ es includ es
included included includ ed includ ed
including including including including

add add add add
adds adds adds add s

added added add ed added
adding adding add ing add ing

continue continue continue continue
continues continues continue s continue s
continued continued continu ed continu ed
continuing continuing continu ing continu ing

report report report report 22 / 70

Log posterior of models on token data

Posterior
True suffixes
Null suffixes

Dirichlet prior parameter α

log Pα

11e-101e-20

-800000

-1e+06

-1.2e+06

• Correct solution is nowhere near as likely as posterior

⇒ model is wrong!

23 / 70

Independence assumption in PCFG model

P








Word

Stem

t a l k

Suffix

i n g #

|θ








= θWord → Stem Suffix θStem → t a l k θSuffix → i n g #

• Model assumes relative frequency of each suffix to be the same for
all stems

• This turns out to be incorrect

24 / 70

Relative frequencies of inflected verb forms

25 / 70

Types and tokens

• A word type is a distinct word shape

• A word token is an occurrence of a word

Data = “the cat chased the other cat”

Tokens = “the”, “cat”, “chased”, “the”, “other”, “cat”

Types = “the”, “cat”, “chased”, “other”

• Estimating θ from word types rather than word tokens eliminates
(most) frequency variation

◮ 4 common verb suffixes, so when estimating from verb types
θSuffix → i n g # ≈ 0.25

• Several psycholinguists believe that humans learn morphology from
word types

26 / 70

Posterior samples from WSJ verb types

α = 0.1 α = 10−5
α = 10−10

α = 10−15

expect expect expect exp ect
expects expect s expect s exp ects

expected expect ed expect ed exp ected
expect ing expect ing expect ing exp ecting
include includ e includ e includ e
include s includ es includ es includ es

included includ ed includ ed includ ed
including includ ing includ ing includ ing

add add add add
adds add s add s add s
add ed add ed add ed add ed

adding add ing add ing add ing
continue continu e continu e continu e
continue s continu es continu es continu es
continu ed continu ed continu ed continu ed

continuing continu ing continu ing continu ing
report report repo rt rep ort 27 / 70

Log posterior of models on type data

Optimal suffixes
True suffixes
Null suffixes

Dirichlet prior parameter α

log Pα

11e-101e-20

0

-200000

-400000

• Correct solution is close to optimal at α = 10−3

28 / 70

Outline

Introduction

Probabilistic context-free grammars and beyond

Learning structure in the acquisition of morphology and the lexicon

Adaptor grammars

Adaptor grammars for agglutinative morphology

Word segmentation using adaptor grammars

Conclusions

Technical details of adaptor grammars

29 / 70

PCFGs and adaptor grammars

• PCFGs are good for describing possible structures, but rules are
too small a unit of generalization for learning

• PCFGs assume the set of rules is fixed in advanced, but often we
want to learn the rules from data, i.e., not assume a finite set of
rules in advance

• PCFGs assume that each nonterminal expands independently, but
often there are probabilistic dependencies across expansions that
we need to learn

30 / 70

Adaptor grammars: informal description

• An adaptor grammar has a set of PCFG rules

• These determine the possible structures as in a CFG

• A subset of the nonterminals are adapted

• Unadapted nonterminals expand by picking a rule and recursively
expanding its children, as in a PCFG

• Adapted nonterminals can expand in two ways:

◮ by picking a rule and recursively expanding its children, or
◮ by generating a previously generated tree (with probability

proportional to the number of times previously generated)

• Each adapted subtree behaves like a new rule added to the
grammar

• The PCFG rules of the adapted nonterminals determine the prior
over these trees

31 / 70

Adaptor grammars as generative processes

• The sequence of trees generated by an adaptor grammar are not
independent

◮ it learns from the trees it generates
◮ if an adapted subtree has been used frequently in the past, it’s

more likely to be used again

• (but the sequence of trees is exchangable)

• An unadapted nonterminal A expands using A → β with
probability θA → β

• An adapted nonterminal A expands:

◮ to a tree τ rooted in A with probability proportional to the
number of times τ was previously generated

◮ using A → β with probability proportional to αAθA → β

32 / 70

Outline

Introduction

Probabilistic context-free grammars and beyond

Learning structure in the acquisition of morphology and the lexicon

Adaptor grammars

Adaptor grammars for agglutinative morphology

Word segmentation using adaptor grammars

Conclusions

Technical details of adaptor grammars

33 / 70

Adaptor grammar morphology example

Word

Stem

Chars

Char

t

Chars

Char

a

Chars

Char

l

Chars

Char

k

Suffix

Chars

Char

i

Chars

Char

n

Chars

Char

g

#

Word → Stem Suffix

Stem → # Chars

Suffix → #

Suffix → Chars #

Chars → Char

Chars → Char Chars

Char → a | . . . | z

• Stem and Suffix rules generate all possible stems and suffixes

• Adapt Word, Stem and Suffix nonterminals

• Sampler uses “Chinese restaurant” processes

34 / 70

Morphology adaptor grammar (0)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Stem restaurant

Stem → #
Stem → # Chars

Suffix restaurant

Suffix → #
Suffix → Chars#

Chars factory

Chars → Char

Chars → CharChars

Char → a . . . z

35 / 70

Morphology adaptor grammar (1a)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

•

Stem restaurant

Stem → #
Stem → # Chars

Suffix restaurant

Suffix → #
Suffix → Chars#

Chars factory

Chars → Char

Chars → CharChars

Char → a . . . z

36 / 70

Morphology adaptor grammar (1b)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

•

Stem restaurant

Stem → #
Stem → # Chars •

Suffix restaurant

Suffix → #
Suffix → Chars# •

Chars factory

Chars → Char

Chars → CharChars

Char → a . . . z

37 / 70

Morphology adaptor grammar (1c)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y•

Suffix restaurant

Suffix → #
Suffix → Chars#

Suffix

Char

s

#

•
Chars factory

Chars → Char

Chars → CharChars

Char → a . . . z

38 / 70

Morphology adaptor grammar (1d)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y•

Suffix restaurant

Suffix → #
Suffix → Chars#

Suffix

Char

s

#

•
Chars factory

Chars → Char

Chars → CharChars

Char → a . . . z

39 / 70

Morphology adaptor grammar (2a)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y•

Suffix restaurant

Suffix → #
Suffix → Chars#

Suffix

Char

s

#

•

•

Chars factory

Chars → Char

Chars → CharChars

Char → a . . . z

40 / 70

Morphology adaptor grammar (2b)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y•

Suffix restaurant

Suffix → #
Suffix → Chars#

Suffix

Char

s

#

•

•

•

Chars factory

Chars → Char

Chars → CharChars

Char → a . . . z

•

41 / 70

Morphology adaptor grammar (2c)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars#

Suffix

Char

s

#

•

•

•

Chars factory

Chars → Char

Chars → CharChars

Char → a . . . z

•

42 / 70

Morphology adaptor grammar (2d)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars#

Suffix

Char

s

#

•

•

•

Chars factory

Chars → Char

Chars → CharChars

Char → a . . . z

•

43 / 70

Morphology adaptor grammar (3)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars#

Suffix

Char

s

#

•

•

•

Chars factory

Chars → Char

Chars → CharChars

Char → a . . . z

•

•

44 / 70

Morphology adaptor grammar (4a)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars#

Suffix

Char

s

#

•

•

•

•

Chars factory

Chars → Char

Chars → CharChars

Char → a . . . z

•

•

45 / 70

Morphology adaptor grammar (4b)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars#

Suffix

Char

s

#

•

•

•

•

•
Chars factory

Chars → Char

Chars → CharChars

Char → a . . . z

•

•

•

46 / 70

Morphology adaptor grammar (4c)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars#

Suffix

Char

s

#

Suffix

#

•

•

•

•

•
Chars factory

Chars → Char

Chars → CharChars

Char → a . . . z

•

•

•

47 / 70

Morphology adaptor grammar (4d)

. . .

. . .

. . .

Word restaurant

Word → StemSuffix

Word

Stem

Chars

b u y

Suffix

Char

s

#

Word

Stem

Chars

r u n

Suffix

Char

s

#

•

Stem restaurant

Stem → #
Stem → # Chars

Stem

Chars

b u y

Stem

Chars

r u n•

Suffix restaurant

Suffix → #
Suffix → Chars#

Suffix

Char

s

#

Suffix

#

•

•

•

Word

Stem

Chars

b u y

Suffix

#

•

•
Chars factory

Chars → Char

Chars → CharChars

Char → a . . . z

•

•

•

48 / 70

Properties of adaptor grammars

• Possible trees generated by CFG rules
but the probability of each adapted tree is estimated separately

• Probability of a tree is:

proportional to the number of times seen before
⇒ “rich get richer” dynamics (Zipf distributions)
plus a constant times the probability of generating it via
PCFG expansion

⇒ Useful compound structures can be more probable than their parts

• PCFG rule probabilities estimated from table labels
⇒ learns from types, not tokens
⇒ dampens frequency variation

49 / 70

Learning Sesotho verbal morphology using an

adaptor grammar

re
sm

a
t

di
om

bon
v

a
m

“We see them”

Word

Prefix1

r e

Prefix2

a

Prefix3

d i

Stem

b o n

Suffix1

a

Word → (Prefix1) (Prefix2) (Prefix3) Stem (Suffix)

• Sesotho is a Bantu language with complex morphology, not much
phonology

• Demuth’s Sesotho corpus contains morphological parses for 2,283
distinct verb types

• An adaptor grammar finds morphological analyses for these verbs
◮ 62% f-score (morpheme accuracy)
◮ 41% words completely correct

50 / 70

Outline

Introduction

Probabilistic context-free grammars and beyond

Learning structure in the acquisition of morphology and the lexicon

Adaptor grammars

Adaptor grammars for agglutinative morphology

Word segmentation using adaptor grammars

Conclusions

Technical details of adaptor grammars

51 / 70

Unigram model of word segmentation

• Unigram model: each word is generated independently

• Input is unsegmented broad phonemic transcription (Brent)
Example: y u w a n t t u s i D 6 b u k

• Adaptor for Word non-terminal caches previously seen words

Words → Word+

Word → Phoneme+

Words

Word

y u

Word

w a n t

Word

t u

Word

s i

Word

D 6

Word

b U k

Words

Word

h & v

Word

6

Word

d

Word

r I N k

• Unigram word segmentation on Brent corpus: 55% token f-score
52 / 70

Unigram model often finds collocations

• Unigram word segmentation model assumes each word is generated
independently

• But there are strong inter-word dependencies (collocations)

• Unigram model can only capture such dependencies by analyzing
collocations as words

Words

Word

t e k

Word

D 6 d O g i

Word

Q t

Words

Word

y u w a n t t u

Word

s i D 6

Word

b U k

53 / 70

Unigram word segmentation grammar learnt

• Based on the base grammar rules

Words → Word+

Word → Phoneme+

the adapted grammar contains 1,712 rules such as:

15758 Words → Word Words

9791 Words → Word

1660 Word → Phoneme+

402 Word → y u

137 Word → I n

111 Word → w I T

100 Word → D 6 d O g i

45 Word → I n D 6

20 Word → I n D 6 h Q s

54 / 70

Combining morphology and word segmentation

Words → Word+

Word → Stem Suffix

Word → Stem

Stem → Phoneme+

Suffix → Phoneme+

Words

Word

Stem

w a n

Suffix

6

Word

Stem

k l o z

Suffix

I t

Words

Word

Stem

y u

Suffix

h & v

Word

Stem

t u

Word

Stem

t E l

Suffix

m i

• Adaptors for Word, Stem and Suffix nonterminals
• Doesn’t do a good job of learning morphology (which doesn’t

appear that much in corpus) or word segmentation (35% f-score),
but does find interesting collocations!

55 / 70

Syllable structure and word segmentation

Sentence → Word+ Word → SyllableIF

Word → SyllableI SyllableF Word → SyllableI Syllable SyllableF

Syllable → (Onset) Rhyme SyllableI → (OnsetI) Rhyme

SyllableF → (Onset) RhymeF SyllableIF → (OnsetI) RhymeF

Rhyme → Nucleus (Coda) RhymeF → Nucleus (CodaF)
Onset → Consonant+ OnsetI → Consonant+

Coda → Consonant+ CodaF → Consonant+

Nucleus → Vowel+

• Grammar distinguishes initial (I) and final (F) clusters
(even though training data doesn’t indicate which is which)

56 / 70

Analysis using syllable structure adaptor grammar

Sentence

Word

OnsetI

W

Nucleus

A

CodaF

t s

Word

OnsetI

D

Nucleus

I

CodaF

s

• Word, Onset, Nucleus and Coda are adapted (learnt)
Syllable is not

• Performs word segmentation with 47% f-score (worse than unigram
model)

• Strong tendancy to misanalyse function/content word collocations
as single words

57 / 70

Modeling collocations improves segmentation

Sentence → Colloc+

Colloc → Word+

Word → Phoneme⋆

Sentence

Colloc

Word

y u

Word

w a n t t u

Colloc

Word

s i

Colloc

Word

D 6

Word

b U k

• A Colloc(ation) consists of one or more words
• Both Words and Collocs are adapted (learnt)
• Significantly improves word segmentation accuracy over unigram

model (75% token f-score; same as Goldwater’s bigram model)
• Two levels of Collocations improves slighly (76%)

58 / 70

Morphology + Collocations + Word segmentation

Sentence → Colloc+ Colloc → Word+

Word → Stem (Suffix) Stem → Phoneme+

Suffix → Phoneme+

Sentence

Colloc

Word

Stem

y u

Word

Stem

h & v

Suffix

t u

Colloc

Word

Stem

t E l

Suffix

m i

• Word segmentation f-score = 59% (worse than collocations alone)

59 / 70

Morphology + 2 Collocation levels

Sentence → Colloc2+ Colloc2 → Colloc+

Colloc → Word+ Word → Stem (Suffix)
Stem → Phoneme+ Suffix → Phoneme+

Sentence

Colloc2

Colloc

Word

Stem

k & n

Suffix

y u

Colloc2

Colloc

Word

Stem

f

Suffix

i d

Word

Stem

I

Suffix

t

Colloc

Word

Stem

t

Suffix

u

Word

Stem

D 6 d O g

Suffix

i

• But with two Collocation levels f-score = 79%

60 / 70

Syllables + Collocations + Word segmentation

Sentence → Colloc+ Colloc → Word+

Word → SyllableIF Word → SyllableI SyllableF

Word → SyllableI Syllable SyllableF Syllable → (as before)

Sentence

Colloc

Word

OnsetI

h

Nucleus

&

CodaF

v

Colloc

Word

Nucleus

6

Word

OnsetI

d r

Nucleus

I

CodaF

N k

• Word segmentation f-score = 68%
• With 2 Collocation levels f-score = 84% (better than

Colloc+morphology)
• Without distinguishing initial/final clusters f-score = 82%

61 / 70

Syllables + 2-level Collocations + Word

segmentation

Sentence

Colloc2

Colloc

Word

OnsetI

g

Nucleus

I

CodaF

v

Word

OnsetI

h

Nucleus

I

CodaF

m

Colloc

Word

Nucleus

6

Word

OnsetI

k

Nucleus

I

CodaF

s

Colloc2

Colloc

Word

Nucleus

o

Word

OnsetI

k

Nucleus

e

62 / 70

Word segmentation results summary

Collocation levels
0 1 2 3

word 0.55 0.73 0.75 0.72
morphology 0.35 0.55 0.79 0.73
syllable 0.32 0.69 0.82 0.79
syllableIF 0.46 0.68 0.84 0.84

• We can learning collocations and syllable structure together with
word segmentation, even though we don’t know where the word
boundaries are

• Learning these together improves word segmentation accuracy

◮ are there other examples of synergistic interaction in language
learning?

63 / 70

Outline

Introduction

Probabilistic context-free grammars and beyond

Learning structure in the acquisition of morphology and the lexicon

Adaptor grammars

Adaptor grammars for agglutinative morphology

Word segmentation using adaptor grammars

Conclusions

Technical details of adaptor grammars

64 / 70

Summary and future work

• Adaptor grammars “adapt” their distribution to the strings they
have generated

• They learn the subtrees of the adapted nonterminals they generate

• This makes adaptor grammars non-parametric; the number of
subtrees they track depends on the data

• A variety of different linguistic phenomena can be described with
adaptor grammars

• Because they are grammars, they are easy to design and compose

• But they still have a “context-freeness” that makes it impossible to
express e.g., Goldwater’s bigram word segmentation model. Can
we add context-sensitivity in a manageable way?

• The MCMC sampling algorithm used does not seem to scale well to
large data or complicated grammars. Are there better estimators?

65 / 70

Outline

Introduction

Probabilistic context-free grammars and beyond

Learning structure in the acquisition of morphology and the lexicon

Adaptor grammars

Adaptor grammars for agglutinative morphology

Word segmentation using adaptor grammars

Conclusions

Technical details of adaptor grammars

66 / 70

From Chinese restaurants to Dirichlet processes

• Labeled Chinese restaurant processes take a base distribution PG

and return a stream of samples from a different distribution with
the same support

• The Chinese restaurant process is a sequential process, generating
the next item conditioned on the previous ones

• We can get a different distribution each time we run a CRP
(placing customers on tables and labeling tables are random)

• Abstracting away from sequential generation, a CRP maps PG to a
distribution over distributions DP(α, PG)

• DP(α, PG) is called a Dirichlet process with concentration
parameter α and base distribution PG

• Distributions in DP(α, PG) are discrete (w.p. 1) even if the base
distribution PG is continuous

67 / 70

PCFGs as recursive mixture processes

For simplicity assume all runs in CNF, i.e., all rules are of the form
A → B C or A → w , where A, B , C ∈ N and w ∈ T .
Each nonterminal A ∈ N generates a distribution GA over trees rooted
in A.

GA =
∑

A → B C∈RA

θA → B CTreeA(GB , GC) +
∑

A → w∈RA

θA → wTreeA(w)

where TreeA(w) puts all of its mass on the tree with child w and
TreeA(P, Q) is the distribution over trees rooted in A with children
distributed according to P and Q respectively.

TreeA(P, Q)

(

A

t1 t2

)

= P(t1) Q(t2)

The tree language generated by the PCFG is GS .
68 / 70

Adaptor grammars

An adaptor grammar (G , θ, α) is a PCFG (G , θ) together with a
parameter vector α where for each A ∈ N, αA is the parameter of the
Dirichlet process associated with A.

GA ∼ DP(αA, HA) if αA > 0

= HA if αA = 0

HA =
∑

A → B C∈RA

θA → B CTreeA(GB , GC) +
∑

A → w∈RA

θA → wTreeA(w)

The grammar generates the distribution over trees GS .
There is one Dirichlet Process for each non-terminal A where αA > 0.
Its base distribution HA is a mixture of the language generated by the
Dirichlet processes associated with other non-terminals.

69 / 70

Estimating adaptor grammars

• Need to estimate:

◮ table labels and customer count for each table
◮ (optional) probabilities of productions labeling tables

• Component-wise Metropolis-Hastings sampler

◮ ith component is the parse tree for input string i
◮ sample parse for input i using grammar estimated from parses

for other inputs

• Sampling directly from conditional distribution of parses seems
intractable

◮ construct PCFG approximation on the fly
◮ each table label corresponds to a production in PCFG

approximation
◮ Use accept/reject to convert stream of samples from PCFG

approx to samples from adaptor grammar

70 / 70

	Introduction
	Probabilistic context-free grammars and beyond
	Learning structure in the acquisition of morphology and the lexicon
	Adaptor grammars
	Adaptor grammars for agglutinative morphology
	Word segmentation using adaptor grammars
	Conclusions
	Technical details of adaptor grammars

