Dynamic programming for parsing and estimation of Stochastic LFGs

Mark Johnson

Brown University

LFG'02, Athens

Acknowledgements: Stuart Geman, Stefan Riezler

Talk outline

- Why stochastic grammars?
- Stochastic LFGs
 - Selecting the optimal (most likely) parse
 - (Relationship to Optimality Theory)
 - Exponential distributions
 - Learning stochastic LFGs
- Dynamic programming for stochastic LFGs
 - Maxwell-Kaplan contexted representations
 - Property locality
 - Avoiding enumerating all parses

Two problems of non-statistical CL

- 1. Ambiguity explodes combinatorially
 - (162) Even though it's possible to scan using the Auto Image Enhance mode, it's best to use the normal scan mode to scan your documents.
 - Refining the grammar is often self-defeating
 ⇒ splits states ⇒ makes the problem worse!
 - Preference information guides parser to correct analysis
- 2. Requiring grammaticality leads to non-robustness
 - Ungrammatical sentences are often comprehensible

Optimization and Statistics

- An *optimization-based approach* can solve both problems
 Robustness: Every interpretable string receives *at least one parse*
 - **Ambiguity:** Parses are ranked, parser returns *highest ranked parse*
- Why statistics?
 - Parsing and acquisition are *inference problems*
 - Statistics is the study of *inference under uncertainty*

Linguistics and statistical parsing

- Statistical parsers are *not* "linguistics-free"
 - The training data consists of syntactic parses
 - Possible features specified manually
- What is the most effective way to import useful linguistic knowledge?
 - *manually specify* linguistic representations (LFG)
 - *manually specify* features
 - *learn* feature weights from training data

How to select the optimal parse?

- There are *many features* that might be relevant
 - Subcategorization preferences
 - Prefer argument over adjunct attachment
 - Selectional preferences
 - Parallelism of coordinate structures
- How do we choose a parse when the features are contraditory?
 - Rank the features; use the highest ranked features (OT)
 - Weight each feature; use a weighted combination of features

Linear models of parse selection

- An LFG parser produces *parses* $\{y_1, \ldots, y_\ell\}$ of the sentence
- Each feature f_j is a *real-valued function*: $f_j(y)$ scores y
- Each feature f_j has a *real-valued weight* λ_j
- The *score* S(y) of parse y is

$$S(y) = \lambda_1 f_1(y) + \ldots + \lambda_m f_m(y) = \sum_{j=1}^m \lambda_j f_j(y)$$

• The *highest scoring parse* is selected

$$\hat{y} = \operatorname*{argmax}_{y \in \{y_1, \dots, y_\ell\}} S(y)$$

Why a *linear* combination of features?

- Intuition: No single feature alone reliably indicates best parse
- Linear combination of features is about the simplest possible
 - Each feature can be arbitrarily complex
 - Really a restriction on complexity of *learning*
- Used in virtually all other statistical models
- Has impeccable information-theoretic justification

Aside: Simulating OT with a linear model

• For each OT constraint c introduce a feature f_c :

 $f_c(y) =$ number of times y violates c

- Feature weight \approx constraint ranking
 - Feature weights for OT constraints are always negative
 - OT: strict domination
 - Linear model: no strict domination
- If *number of constraint violations is bounded* then for every OT constraint ranking there are feature weights so that *the OT optimal parse is the highest linear scoring parse*

Sample LFG parse

Features

Rule features: For every non-terminal *X*, $f_X(y)$ is the number of times *X* occurs in c-structure of *y*

- **Attribute value features:** For every attribute *a* and every atomic value *v*, $f_{a=v}(y)$ is the number of times the pair a = v appears in *y*
- **Argument and adjunct features:** For every grammatical function g, $f_g(y)$ is the number of times that g appears in y
- **Other features:** Dates, times, locations; right branching; attachment location; parallelism in coordination; ...
 - Choice of features is a linguistic issue

Learning the feature weights

- Training data: sentences and their "correct" parses
- Parse each sentence to obtain its competitors
- Compute feature values for correct and competitor parses

	Correct parse's features	All other parses' features
sentence 1	[1,3,2]	$\left[2,2,3 ight]\left[3,1,5 ight]\left[2,6,3 ight]$
sentence 2	$\left[7,2,1 ight]$	[2,5,5]
sentence 3	[2, 4, 2]	$[1,1,7] \; [7,2,1]$

• Choose feature weights so that correct parses are most often optimal

Estimating the feature weights

- Classical discriminative learning ⇒ many algorithms
- We used *maximum conditional likelihood estimation* of a *log linear model* (a.k.a. exponential, MaxEnt, Harmony, ...)
 - Conditional probability of a parse y of a sentence x

$$\Pr_{\lambda}(y|x) = 1/Z(x) \exp(S(y))$$

- Conditional likelihood of data $D = (x_1, y_1), \ldots, (x_n, y_n)$

$$L_D(\lambda) = \prod_{i=1}^n \Pr_{\lambda}(y_i|x_i)$$

– Maximum conditional likelihood estimate of λ

$$\hat{\lambda} = \operatorname*{argmax}_{\lambda} L_D(\lambda)$$

Estimating feature weights *efficiently*

- No known analytical solution for $\hat{\lambda}$
- Most other estimation techniques also don't have analytical solutions
- \Rightarrow Use standard iterative numerical optimization techniques
- \Rightarrow Repeated reparsing of training data
 - Modern parsers (e.g., XLE) produce *packed representations* of parses
 - Can we work directly from these packed representations, i.e., avoid unpacking? <u>YES</u>*
 - Related work: Miyao and Tsuji (2002) "Maximum Entropy Estimation for Feature Forests" HLT

Product form of log linear model

• Reparameterize feature weights: $\theta_j = \exp(\lambda_j)$

$$W(y) = \exp(S(y)) = \exp(\sum_{j=1}^{m} \lambda_j f_j(y)) = \prod_{j=1}^{m} \theta_j^{f_j(y)}$$

• Optimal parse \hat{y}

$$\hat{y} = \operatorname{argmax}_{y \in \{y_1, \dots, y_\ell\}} S(y) = \operatorname{argmax}_{y \in \{y_1, \dots, y_\ell\}} W(y)$$

- Aside: Every PCFG is a log linear model in product form
 - The production probabilities are the θ_j
 - The probability of a parse is W(y)

Maxwell and Kaplan packed parses

- A parse *y* consists of set of fragments $\xi \in y$
- A fragment is in a parse when its *context function* is true
- Context functions are functions of zero or more *context variables*
- The variable assignment must satisfy "not no-good" functions
- Each parse is identified by a *unique context variable assignment*

$$\xi = "the \ cat \ on \ the \ mat"$$

$$\xi_1 = "with \ a \ hat"$$

$$X_1 \rightarrow "attach \ D \ to \ B"$$

$$\neg X_1 \rightarrow "attach \ D \ to \ A"$$

Feature locality

- Features must be *local* to fragments: $f_j(y) = \sum_{\xi \in y} f_j(\xi)$
- May require changes to LFG to make all features local

$$\xi =$$
 "the cat on the mat"
 $\xi_1 =$ "with a hat"

 $X_1 \rightarrow$ "attach *D* to *B*" $\land (\xi_1 \text{ ATTACH}) = \text{LOW}$

 $\neg X_1 \rightarrow$ "attach *D* to *A*" \land ($\xi_1 \text{ ATTACH}$) = HIGH

Feature locality decomposes W(y)

• Feature locality: the weight of a parse is the product of weights of its fragments

$$W(y) = \prod_{\xi \in y} W(\xi), \quad \text{where}$$
$$W(\xi) = \prod_{j=1}^{m} \theta_j^{f_j(\xi)}$$

 $W(\xi = "the \ cat \ on \ the \ mat")$ $W(\xi_1 = "with \ a \ hat")$ $X_1 \rightarrow W("attach \ D \ to \ B" \land (\xi_1 \ ATTACH) = LOW)$ $\neg X_1 \rightarrow W("attach \ D \ to \ A" \land (\xi_1 \ ATTACH) = HIGH)$

Not No-goods

• "Not no-goods" identify the variable assignments that correspond to parses

$$\xi = "I read a book"$$

$$\xi_1 =$$
 "on the table"

- $X_1 \wedge X_2 \rightarrow$ "attach *D* to *B*"
- $X_1 \wedge \neg X_2 \quad \rightarrow \quad$ "attach *D* to *A*"

$$\neg X_1 \rightarrow$$
 "attach *D* to *C*"

Identify parses with variable assignments

- Each variable assignment uniquely identifies a parse
- For a given sentence *w*, let W'(x) = W(y) where *y* is the parse identified by *x*
- ⇒ Argmax/sum/expectations over parses can be computed over context variables instead

Most likely parse: $\hat{x} = \operatorname{argmax}_{x} W'(x)$

Partition function: $Z(w) = \sum_{x} W'(x)$

Expectation:^{*} $E[f_j|w] = \sum_x f_j(x)W'(x)/Z(w)$

W' is a product of functions of X

- Write $W(X) = \prod_{A \in \mathcal{A}} A(X)$, where:
 - Each line $\alpha(X) \to \xi$ introduces a term $W(\xi)^{\alpha(X)}$
 - A "not no-good" $\eta(X)$ introduces a term $\eta(X)$

 \Rightarrow W' is a *Markov Random Field* over the context variables X

W' is a product of functions of X

 $W'(X_1) = W(\xi = "the \ cat \ on \ the \ mat")$ $\times W(\xi_1 = "with \ a \ hat")$ $\times W("attach \ D \ to \ B" \ \land \ (\xi_1 \ ATTACH) = LOW)^{X_1}$ $\times W("attach \ D \ to \ A" \ \land \ (\xi_1 \ ATTACH) = HIGH)^{\neg X_1}$

Product expressions and graphical models

- MRFs are products of terms, each of which is a function of (a few) variables
- Graphical models provide *dynamic programming algorithms* for Markov Random Fields (MRF) (Pearl 1988)
- These algorithms implicitly *factorize the product*
- They generalize the Viterbi and Forward-Backward algorithms to arbitrary graphs (Smyth 1997)
- ⇒ Graphical models provide dynamic programming techniques for parsing and training Stochastic LFGs

Factorization example

$$W'(X_{1}) = W(\xi = "the cat on the mat")$$

$$\times W(\xi_{1} = "with a hat")$$

$$\times W("attach D to B" \land (\xi_{1} \text{ ATTACH}) = \text{LOW})^{X_{1}=1}$$

$$\times W("attach D to A" \land (\xi_{1} \text{ ATTACH}) = \text{HIGH})^{X_{1}=0}$$

$$\max_{X_{1}} W'(X_{1}) = W(\xi = "the cat on the mat")$$

$$\times W(\xi_{1} = "with a hat")$$

$$\times \max_{X_1} \left(\begin{array}{c} W (\text{``attach } D \text{ to } B'' \land (\xi_1 \text{ ATTACH}) = \text{LOW })^{X_1 = 1}, \\ W (\text{``attach } D \text{ to } A'' \land (\xi_1 \text{ ATTACH}) = \text{HIGH })^{X_1 = 0} \end{array} \right)$$

Dependency structure graph $G_{\mathcal{A}}$

$$\hat{x} = \operatorname{argmax}_{x} W(x) = \operatorname{argmax}_{x} \prod_{A \in \mathcal{A}} A(x)$$

- $G_{\mathcal{A}}$ is the *dependency graph* for \mathcal{A}
 - context variables X are vertices of G_A
 - G_A has an edge (X_i, X_j) if both are arguments of some $A \in \mathcal{A}$

 $A(X) = a(X_1, X_3)b(X_2, X_4)c(X_3, X_4, X_5)d(X_4, X_5)e(X_6, X_7)$

Graphical model computations

$$\hat{x} = \operatorname{argmax}_{x} a(x_{1}, x_{3})b(x_{2}, x_{4})c(x_{3}, x_{4}, x_{5})d(x_{4}, x_{5})e(x_{6}, x_{7})$$

$$W(\hat{x}) = \operatorname{max}_{x} a(x_{1}, x_{3})b(x_{2}, x_{4})c(x_{3}, x_{4}, x_{5})d(x_{4}, x_{5})e(x_{6}, x_{7})$$

$$W_{1}(x_{3}) = \operatorname{max}_{x_{1}} a(x_{1}, x_{3})$$

$$W_{2}(x_{4}) = \operatorname{max}_{x_{2}} b(x_{2}, x_{4})$$

$$W_{3}(x_{4}, x_{5}) = \operatorname{max}_{x_{3}} c(x_{3}, x_{4}, x_{5})W_{1}(x_{3})$$

$$W_{4}(x_{5}) = \operatorname{max}_{x_{4}} d(x_{4}, x_{5})W_{2}(x_{4})W_{3}(x_{4}, x_{5})$$

$$W_{5} = \operatorname{max}_{x_{5}} W_{4}(x_{5})$$

$$W_{6}(x_{7}) = \operatorname{max}_{x_{6}} e(x_{6}, x_{7})$$

$$W(\hat{x}) = W_{5}W_{7}$$

$$X_{1} = X_{3} X_{5}$$

$$X_{6}$$

$$X_{7}$$

Graphical model for Homecentre example

Use a damp, lint-free cloth to wipe the dust and dirt buildup from the scanner plastic window and rollers.

Computational complexity

- Polynomial in m = the maximum number of variables in the dynamic programming functions ≥ the number of variables in any function A
- *m* depends on the ordering of variables (and *G*)
- Finding the variable ordering that minimizes *m* is NP-complete, but there are good heuristics
- ⇒ Worst case exponential (no better than enumerating the parses), but average case might be much better
 - Much like LFG parsing complexity

Conclusion

- It is possible to directly compute the statistics for parsing and estimation from Maxwell and Kaplan packed parses
- Features must be local to parse fragments
 - May require adding features to the grammar
- Computational complexity is worst-case exponential, average case?
- Makes available techniques for graphical models to Stochastic Lexical-Functional Grammar
 - MCMC and other sampling techniques

Future directions

- Reformulate "hard" LFG grammatical constraints as "soft" stochastic features
 - Underlying LFG permits all possible structural combinations
 - Grammatical constraints reformulated as stochastic features
- Is this computation tractable?
- Relationship with Dynamic Programming in Optimality Theory
 - Can these techniques be extended to OT LFG?