
Dynamic programming for
parsing and estimation of

Stochastic LFGs

Mark Johnson

Brown University

LFG’02, Athens

Acknowledgements: Stuart Geman, Stefan Riezler

1



Talk outline

• Why stochastic grammars?

• Stochastic LFGs

– Selecting the optimal (most likely) parse

– (Relationship to Optimality Theory)

– Exponential distributions

– Learning stochastic LFGs

• Dynamic programming for stochastic LFGs

– Maxwell-Kaplan contexted representations

– Property locality

– Avoiding enumerating all parses
2



Two problems of non-statistical CL

1. Ambiguity explodes combinatorially
(162) Even though it’s possible to scan using the Auto Image Enhance

mode, it’s best to use the normal scan mode to scan your documents.

• Refining the grammar is often self-defeating
⇒ splits states ⇒ makes the problem worse!

• Preference information guides parser to correct
analysis

2. Requiring grammaticality leads to non-robustness

• Ungrammatical sentences are often comprehensible

3



Optimization and Statistics

• An optimization-based approach can solve both problems

Robustness: Every interpretable string receives at least
one parse

Ambiguity: Parses are ranked, parser returns highest
ranked parse

• Why statistics?

– Parsing and acquisition are inference problems

– Statistics is the study of inference under uncertainty

4



Linguistics and statistical parsing

• Statistical parsers are not “linguistics-free”

– The training data consists of syntactic parses

– Possible features specified manually

• What is the most effective way to import useful linguistic
knowledge?

– manually specify linguistic representations (LFG)

– manually specify features

– learn feature weights from training data

5



How to select the optimal parse?

• There are many features that might be relevant
– Subcategorization preferences

– Prefer argument over adjunct attachment

– Selectional preferences

– Parallelism of coordinate structures

• How do we choose a parse when the features are
contraditory?

– Rank the features; use the highest ranked features (OT)

– Weight each feature; use a weighted combination of
features

6



Linear models of parse selection

• An LFG parser produces parses {y1, . . . , y`} of the sentence

• Each feature fj is a real-valued function: fj(y) scores y

• Each feature fj has a real-valued weight λj

• The score S(y) of parse y is

S(y) = λ1f1(y) + . . . + λmfm(y) =
m

∑

j=1

λjfj(y)

• The highest scoring parse is selected

ŷ = argmax
y∈{y1,...,y`}

S(y)

7



Why a linear combination of features?

• Intuition: No single feature alone reliably indicates best
parse

• Linear combination of features is about the simplest
possible

– Each feature can be arbitrarily complex

– Really a restriction on complexity of learning

• Used in virtually all other statistical models

• Has impeccable information-theoretic justification

8



Aside: Simulating OT with a linear model

• For each OT constraint c introduce a feature fc:

fc(y) = number of times y violates c

• Feature weight ≈ constraint ranking

– Feature weights for OT constraints are always negative

– OT: strict domination

– Linear model: no strict domination

• If number of constraint violations is bounded then for every
OT constraint ranking there are feature weights so that the
OT optimal parse is the highest linear scoring parse

9



Sample LFG parse

TURN

SEGMENT

ROOT

Sadj

S

VPv

V

let

NP

PRON

us

VPv

V

take

NP

DATEP

N

Tuesday

COMMA

,

DATEnum

D

the

NUMBER

fifteenth

PERIOD

.

SENTENCE ID BAC002 E

OBJ

9

ANIM +
CASE ACC
NUM PL
PERS 1
PRED PRO
PRON-FORM WE
PRON-TYPE PERS

PASSIVE −
PRED LET〈2,10〉9

STMT-TYPE IMPERATIVE

SUBJ
2

PERS 2
PRED PRO
PRON-TYPE NULL

TNS-ASP MOOD IMPERATIVE

XCOMP

10

OBJ

13

ANIM −

APP

NTYPE NUMBER ORD
TIME DATE

NUM SG
PRED fifteen

SPEC SPEC-FORM THE
SPEC-TYPE DEF

CASE ACC
GEND NEUT

NTYPE
GRAIN COUNT
PROPER DATE
TIME DAY

NUM SG
PERS 3
PRED TUESDAY

PASSIVE −
PRED TAKE〈9,13〉
SUBJ 9

10



Features

Rule features: For every non-terminal X , fX(y) is the number
of times X occurs in c-structure of y

Attribute value features: For every attribute a and every
atomic value v, fa=v(y) is the number of times the pair
a = v appears in y

Argument and adjunct features: For every grammatical
function g, fg(y) is the number of times that g appears in y

Other features: Dates, times, locations; right branching;
attachment location; parallelism in coordination; . . .

• Choice of features is a linguistic issue

11



Learning the feature weights

• Training data: sentences and their “correct” parses

• Parse each sentence to obtain its competitors

• Compute feature values for correct and competitor parses

Correct
parse’s
features

All other parses’ features

sentence 1 [1, 3, 2] [2, 2, 3] [3, 1, 5] [2, 6, 3]

sentence 2 [7, 2, 1] [2, 5, 5]

sentence 3 [2, 4, 2] [1, 1, 7] [7, 2, 1]

• Choose feature weights so that correct parses are most
often optimal

12



Estimating the feature weights

• Classical discriminative learning ⇒ many algorithms

• We used maximum conditional likelihood estimation of a log
linear model (a.k.a. exponential, MaxEnt, Harmony, . . . )

– Conditional probability of a parse y of a sentence x

Prλ(y|x) = 1/Z(x) exp(S(y))

– Conditional likelihood of data D = (x1, y1), . . . , (xn, yn)

LD(λ) =
n

∏

i=1

Prλ(yi|xi)

– Maximum conditional likelihood estimate of λ

λ̂ = argmax
λ

LD(λ)

13



Estimating feature weights efficiently

• No known analytical solution for λ̂

• Most other estimation techniques also don’t have
analytical solutions

⇒ Use standard iterative numerical optimization techniques

⇒ Repeated reparsing of training data

• Modern parsers (e.g., XLE) produce packed representations
of parses

• Can we work directly from these packed representations,
i.e., avoid unpacking? YES?

– Related work: Miyao and Tsuji (2002) “Maximum
Entropy Estimation for Feature Forests” HLT

14



Product form of log linear model

• Reparameterize feature weights: θj = exp(λj)

W (y) = exp(S(y)) = exp(
m

∑

j=1

λjfj(y)) =
m
∏

j=1

θj
fj(y)

• Optimal parse ŷ

ŷ = argmax
y∈{y1,...,y`}

S(y) = argmax
y∈{y1,...,y`}

W (y)

• Aside: Every PCFG is a log linear model in product form

– The production probabilities are the θj

– The probability of a parse is W (y)

15



Maxwell and Kaplan packed parses

• A parse y consists of set of fragments ξ ∈ y

• A fragment is in a parse when its context function is true

• Context functions are functions of zero or more context variables

• The variable assignment must satisfy “not no-good” functions

• Each parse is identified by a unique context variable assignment

ξ = “the cat on the mat”

ξ1 = “with a hat”

X1 → “attach D to B”

¬X1 → “attach D to A” with a hat

the cat on

the mat
¬X1

X1

A

B

D

16



Feature locality

• Features must be local to fragments: fj(y) =
∑

ξ∈y fj(ξ)

• May require changes to LFG to make all features local

ξ = “the cat on the mat”

ξ1 = “with a hat”

X1 → “attach D to B” ∧ (ξ1 ATTACH) = LOW

¬X1 → “attach D to A” ∧ (ξ1 ATTACH) = HIGH

with a hat

the cat on

the mat
¬X1

X1

A

B

D

17



Feature locality decomposes W (y)

• Feature locality: the weight of a parse is the product of
weights of its fragments

W (y) =
∏

ξ∈y

W (ξ), where

W (ξ) =
m
∏

j=1

θ
fj(ξ)
j

W (ξ = “the cat on the mat”)

W (ξ1 = “with a hat”)

X1 → W (“attach D to B” ∧ (ξ1 ATTACH) = LOW )

¬X1 → W (“attach D to A” ∧ (ξ1 ATTACH) = HIGH )

18



Not No-goods

• “Not no-goods” identify the variable assignments that
correspond to parses

ξ = “I read a book”

ξ1 = “on the table”

X1 ∧ X2 → “attach D to B”

X1 ∧ ¬X2 → “attach D to A”

¬X1 → “attach D to C”

X1 ∨ X2

on the table

a book X1 ∧ ¬X2

X1 ∧ X2

¬X1

I read

D

A
B

C

19



Identify parses with variable assignments

• Each variable assignment uniquely identifies a parse

• For a given sentence w, let W ′(x) = W (y) where y is the
parse identified by x

⇒ Argmax/sum/expectations over parses can be computed
over context variables instead

Most likely parse: x̂ = argmaxx W ′(x)

Partition function: Z(w) =
∑

x W ′(x)

Expectation:? E[fj|w] =
∑

x fj(x)W ′(x)/Z(w)

20



W ′ is a product of functions of X

• Write W (X) =
∏

A∈A A(X), where:

– Each line α(X) → ξ introduces a term W (ξ)α(X)

– A “not no-good” η(X) introduces a term η(X)

...

α(X) → ξ

...

η(X)

...

...

× W (ξ)α(X)

×
...

× η(X)

×
...

⇒ W ′ is a Markov Random Field over the context variables X

21



W ′ is a product of functions of X

W ′(X1) = W (ξ = “the cat on the mat”)

× W (ξ1 = “with a hat”)

× W (“attach D to B” ∧ (ξ1 ATTACH) = LOW )X1

× W (“attach D to A” ∧ (ξ1 ATTACH) = HIGH )¬X1

with a hat

the cat on

the mat
¬X1

X1

A

B

D

22



Product expressions and graphical models

• MRFs are products of terms, each of which is a function of
(a few) variables

• Graphical models provide dynamic programming algorithms
for Markov Random Fields (MRF) (Pearl 1988)

• These algorithms implicitly factorize the product

• They generalize the Viterbi and Forward-Backward
algorithms to arbitrary graphs (Smyth 1997)

⇒ Graphical models provide dynamic programming
techniques for parsing and training Stochastic LFGs

23



Factorization example

W ′(X1) = W (ξ = “the cat on the mat”)

× W (ξ1 = “with a hat”)

× W (“attach D to B” ∧ (ξ1 ATTACH) = LOW )
X1=1

× W (“attach D to A” ∧ (ξ1 ATTACH) = HIGH )X1=0

max
X1

W ′(X1) = W (ξ = “the cat on the mat”)

× W (ξ1 = “with a hat”)

× max
X1





W (“attach D to B” ∧ (ξ1 ATTACH) = LOW )X1=1 ,

W (“attach D to A” ∧ (ξ1 ATTACH) = HIGH )
X1=0





24



Dependency structure graph GA

x̂ = argmax
x

W (x) = argmax
x

∏

A∈A

A(x)

• GA is the dependency graph for A

– context variables X are vertices of GA

– GA has an edge (Xi, Xj) if both are arguments of some
A ∈ A

A(X) = a(X1, X3)b(X2, X4)c(X3, X4, X5)d(X4, X5)e(X6, X7)

X1 X3 X5 X6

X2 X4 X725



Graphical model computations

x̂ = argmaxx a(x1, x3)b(x2, x4)c(x3, x4, x5)d(x4, x5)e(x6, x7)

W (x̂) = maxx a(x1, x3)b(x2, x4)c(x3, x4, x5)d(x4, x5)e(x6, x7)

W1(x3) = maxx1
a(x1, x3)

W2(x4) = maxx2
b(x2, x4)

W3(x4, x5) = maxx3
c(x3, x4, x5)W1(x3)

W4(x5) = maxx4
d(x4, x5)W2(x4)W3(x4, x5)

W5 = maxx5
W4(x5)

W6(x7) = maxx6
e(x6, x7)

W7 = maxx7
F6(x7)

W (x̂) = W5W7

X1 X3 X5 X6

X2 X4 X7

26



Graphical model for Homecentre example

Use a damp, lint-free cloth to wipe the dust and dirt buildup from the scanner

plastic window and rollers.

27



Computational complexity

• Polynomial in m = the maximum number of variables in the
dynamic programming functions ≥ the number of variables
in any function A

• m depends on the ordering of variables (and G)

• Finding the variable ordering that minimizes m is
NP-complete, but there are good heuristics

⇒ Worst case exponential (no better than enumerating the
parses), but average case might be much better

– Much like LFG parsing complexity

28



Conclusion

• It is possible to directly compute the statistics for parsing
and estimation from Maxwell and Kaplan packed parses

• Features must be local to parse fragments

– May require adding features to the grammar

• Computational complexity is worst-case exponential,
average case?

• Makes available techniques for graphical models to
Stochastic Lexical-Functional Grammar

– MCMC and other sampling techniques

29



Future directions

• Reformulate “hard” LFG grammatical constraints as
“soft” stochastic features

– Underlying LFG permits all possible structural
combinations

– Grammatical constraints reformulated as stochastic
features

• Is this computation tractable?

• Relationship with Dynamic Programming in Optimality
Theory

– Can these techniques be extended to OT LFG?

30


