
Type-driven semantic interpretation and feature

dependencies in R-LFG

Mark Johnson

Revision of 23rd August, 1997

1 Introduction

This paper describes a new formalization of Lexical-Functional Grammar
called R-LFG (where the “R” stands for “Resource-based”). The formal
details of R-LFG are presented in Johnson (1997); the present work concen-
trates on motivating R-LFG and explaining to linguists how it differs from
the “classical” LFG framework presented in Kaplan and Bresnan (1982).

This work is largely a reaction to the linear logic semantics for LFG de-
veloped by Dalrymple and colleagues (Dalrymple et al., 1995; Dalrymple et
al., 1996a; Dalrymple et al., 1996b; Dalrymple et al., 1996c). As explained
below, it seems to me that their “glue language” approach bears a striking
resemblance to semantic interpretation in those versions of categorial gram-
mar which exploit the Curry-Howard correspondence (Girard, Lafont, and
Taylor, 1989; van Benthem, 1995), such as Lambek Categorial Grammar
and its descendants. A primary goal of this work is to develop a version of
LFG in which this connection is made explicit, and in which semantic in-
terpretation falls out as a by-product of the Curry-Howard correspondence
rather than needing to be stipulated via semantic interpretation rules.

Once one has enriched LFG’s formal machinery with the linear logic
mechanisms needed for semantic interpretation, it is natural to ask whether
these make any existing components of LFG redundant. As Dalrymple
and her colleagues note, LFG’s f-structure completeness and coherence con-
straints fall out as a by-product of the linear logic machinery they propose for
semantic interpretation, thus making those f-structure mechanisms redun-
dant. Given that linear logic machinery or something like it is independently
needed for semantic interpretation, it seems reasonable to explore the extent
to which it is capable of handling feature structure constraints as well.

1

R-LFG represents the extreme position that all linguistically required
feature structure dependencies can be captured by the resource-accounting
machinery of a linear or similiar logic independently needed for semantic
interpretation. The goal is to show that LFG linguistic analyses can be
expressed as clearly and perspicuously using the smaller set of mechanisms
of R-LFG as they can using the much larger set of mechanisms in LFG: if
this is the case then we will have shown that positing these extra f-structure
mechanisms are not linguistically warranted. One way to show this would
be to present a translation procedure which reduces LFGs to equivalent R-
LFGs, but currently no such procedure is known. Thus we proceed on a case
by case basis, demonstrating that particular LFG analyses can be expressed
at least as well in R-LFG.

R-LFG is also of interest because it proposes a radically different basis
for feature structure interaction. In “unification-based” theories of gram-
mar feature structures are typically viewed as static objects, which are the
solutions to systems of feature structure constraints (called f-descriptions in
LFG) (Kaplan and Bresnan, 1982; Rounds, 1997; Shieber, 1986). However,
linguists often talk informally of “feature assignment” and “feature check-
ing”; notions which cannot be expressed in a pure unification grammar.
As discussed below, LFG does contain formal devices which can expresses
these notions indirectly, viz., the non-monotonic devices such as existential
constraints and constraint equations. On the other hand, the resource ori-
ented nature of R-LFG provides a direct and natural formalization of the
intuitions behind feature assignment and feature checking.

The rest of this paper is structured as follows. The next section in-
troduces type-driven semantic interpretation from f-structures, and the one
after that sketches the architecture of R-LFG and compares it to that of
standard LFG. The following section introduces the reader to the idea that
features are resources by demonstrating that one method of describing agree-
ment relationships in standard LFG already possesses a resource-oriented
character. The section following that describes how very simple agreement
relationships can be described in R-LFG, and the final substantive section
shows how Andrews (1982) analysis of Icelandic Quirky Case marking can
be re-expressed in R-LFG.

2

2 Type-driven semantic interpretation from f-structures

This section develops type-driven semantic interpretation from graph struc-
tured resources used in R-LFG, motivating it by considering type-driven
semantic interpretation from linearly ordered or sequential structures of re-
sources in categorial grammar.

As has been often observed, the types of semantic objects constrain
how they can combine, and hence the interpretations that can be possibly
constructed from a bag of semantic objects. For example, suppose the words
Sandy and snores are given the semantic interpretations in (1) and (2) with
the types as shown.

Sandy′ : e (1)

λx.snores′(x) : e −◦ t (2)

(The symbol ‘−◦’ is the implication symbol of Linear Logic, so the type e −◦ t
would be written e → t in a Montagovian notation for types). Now, there
is only one way of combining these semantic objects to form a saturated
proposition of type t, namely by applying the semantic interpretation of the
verb snores to the interpretation of Sandy as its argument, so this is the
only possible interpretation of the intransitive clause Sandy snores. This
combination can be depicted as a proof (shown in natural deduction format
here), where the two input semantic forms constitute the assumptions, and
the single saturated proposition produced by the combination constitutes
the conclusion.1

λx.snores′(x) : e −◦ t Sandy′ : e

snores′(Sandy′) : t

It is worth reflecting on what is going on here. The types alone determine
whether a particular way of combining lexical meanings is possible or not.
The λ-terms are purely decorative: they are determined (up to reduction
and renaming of variables) by the meanings of the lexical inputs and the
structure of the combination.

The idea that a logic can be used to describe the possible modes of combi-
nation of a collection of objects underlies the Curry-Howard correspondence,
and is at the root of much recent work in Categorial Grammar (van Ben-
them, 1995). The formulae of such a logic are the types of the objects being
manipulated, and a proof in this logic corresponds to a particular way of

1The resulting semantic form has been simplified via β-reduction.

3

combining the objects. The λ-terms are purely decorative: they are images
of the structure of this proof, and play no role in determining whether a
combination is possible or not.

Unfortunately, in more complex sentences semantic type constraints alone
are not sufficiently restrictive to provide just the available interpretations.
For example, if the semantic intepretations of the three words in the sentence
Sandy likes Kim are as given in (1), (3) and (4)

λy λx.likes′(x, y) : e −◦ e −◦ t (3)

Kim′ : e (4)

(where ‘limp′ associates to the right) then besides permitting a combination
corresponding to the available interpretation

Sandy′ : e

λy λx.likes′(x, y) : e −◦ e −◦ t Kim′ : e

λx.likes′(x,Kim′) : e −◦ t

likes′(Sandy′,Kim′) : t (5)

the semantic type constraints alone also permit an interpretation in which
subject and object are exchanged.

Sandy′ : e λy λx.likes′(x, y) : e −◦ e −◦ t

λx.likes′(x,Sandy′) : e −◦ t Kim′ : e

likes′(Kim′,Sandy′) : t (6)

It is obvious why the unintended interpretation was obtained. The se-
mantic types do not reflect any information about the syntactic structure
of the sentence: merely requiring semantic type compatibility amounts to
treating a sentence as a bag of words, ignoring all other structural relation-
ships between the words. Clearly this is incorrect for a language like English
(as this example shows).

Categorial grammar deals with this problem by refining the structural
sensitivity of the system: the elements manipulated are taken to be a linearly
ordered sequence of categories, rather than just a bag). Correspondingly,
the types must be refined to make them sensitive to this additional struc-
tural information. The single implication ‘−◦’ used above is specialized into
a rightward-looking implication ‘/’ and a leftward-looking implication ‘\’
respectively.

The types associated with intransitive and transitive verbs are refined
from (2) and (3) to (7) and (8), which specify the directions in which their

4

arguments are to be found.

λx.snores′(x) : e \ t (7)

λy λx.likes′(x, y) : (e \ t) / e) (8)

This directional sensitivity rules out the unattested combination (6), only
permitting a combination that corresponds to the available interpretation.

Sandy′ : e

λy λx.likes′(x, y) : (e \ t) / e Kim′ : e

λx.likes′(x,Kim′) : e \ t

likes′(Sandy′,Kim′) : t

Categorial grammarians have developed many insightful linguistic anal-
yses within this framework. The treatment of the syntax-semantics interface
within a framework, such as Lambek Categorial Grammar and its descen-
dants, is especially appealing: once the lexical types and modes of syntactic
combination are specified, semantic interpretation comes “for free” via the
Curry-Howard correspondence between proofs of type well-formedness and
λ-terms.

However, the focus on linear order in categorial grammar goes against
one of the central intuitions of Lexical-Function Grammar: that the level
of word order and surface syntactic structure is not an appropriate one at
which to state many cross-linguistic generalizations. Rather, many inter-
esting cross-linguistic generalizations are more appropriately stated at the
level of function-argument or f-structure.

For example, as Bresnan (1982) argues, the relationship between a verb
and its direct object NP argument may be manifest in many different surface
syntactic relationships:

• it may be indicated by an agreement marker on the verb, or by

• a case marker on the NP direct object, or by

• a syntactic configuration, where the object immediately precedes or
follows the verb as is appropriate, or by

• some combination of the above.

At the level of function argument structure the cross-linguistic uniformity of
grammatical relation changing operations such as Passive becomes appar-
ent. Crucially for the analysis presented here, as far as is known function-
argument relationships are interpreted uniformly cross-linguistically, despite
their variation in surface syntactic realization.

5

Thus from the LFG perspective, the appropriate response to the unat-
tested combination (6) is to make the types sensitive to function-argument
structure rather than word order directly. That is, the input to the combi-
natory process of semantic interpretation should be f-structures, rather than
strings of lexical items.

To some extent this is achieved in the work of Dalrymple and her col-
leagues. In their approach, semantic interpretation starts with an f-structure
decorated with formulae from what they call a “glue language.” Semantic
interpretation is obtained via a combinatory process sensitive to function-
argument structure. Moreover, Dalrymple and colleagues have achieved an
impressive empirical coverage using their glue language approach.

However, the glue language approach seems to suffer from a number of
conceptual drawbacks:

• The formulae manipulated during the course of a derivation are an
amalgam of linear logic terms, standard first-order terms and the
“glue” relation ‘;’. No interpretation (model-theoretic or otherwise)
for such amalgams has been offered, so the manipulations performed in
the course of interpretation can be described as uninterpreted symbol
pushing.

• The semantic combinatory operations in the glue language approach
are formulated in terms of (first-order?) term unification, rather than
the function application and abstraction operations familiar from model-
theoretic semantics. It is known from the computational linguistics
literature that first-order term unification can be used to simulate
β-reduction of λ-terms in function application (Pereira and Shieber,
1987), but it is also known that this simulation only approximately
captures the properties of function application. It would be interesting
to see if a system where resources have a function-argument structure
organization can be made to operate with the more standard func-
tion application and abstraction mechanisms, or if term unification is
essential here.

• Semantic forms are explicitly constructed in the glue language ap-
proach, rather than merely reflecting the structure of the proof, as
they do in a Lambek Categorial Grammar. In principle, the glue
language formalism allows semantic interpretation rules to be written
in which a rule fails to apply not because of a type incompatability,
but because of unification failure of semantic terms (i.e., terms on the

6

right of the ‘;’ relation). Thus these terms need not be restricted to
the purely decorative role that semantic forms play in Lambek Cate-
gorial Grammar, but may determine the well-formedness of a proof.
Again, it would be interesting to know if this is an essential property
of semantic interpretation of f-structures, or if a system exploiting a
Curry-Howard correspondence can be developed.

Thus the system developed here, R-LFG, is explicitly modelled on categorial
grammars where semantic interpretation is obtained by a Curry-Howard
correspondence. It differs from them in that the inputs to the derivational
process have the graph structure of an f-structure, rather than the linear
structure of a string. Borrowing the idea that features in feature structures
can be described by modal operators in a multi-modal language (Kasper
and Rounds, 1990; Rounds, 1997), grammatical relations can be formalized
as propositional modal operators.

Returning to the earlier example, the NP Sandy and the transitive verb
likes would be associated with the lexical entries (9) and (10).

Sandy′ : e (9)

λy λx.likes′(x, y) : OBJ e −◦ SUBJ e −◦ t (10)

(The modal operators ‘SUBJ’, ‘OBJ’, etc., are semantically vacuous, i.e.,
always semantically interpreted by identity functions, and bind more tightly
than the implication symbol ‘−◦’). This entry indicates that the verb likes

first applies to an object of type e (embedded within the OBJ grammatical
relation), yielding a function which in turn applies to a subject of type e to
yield a saturated proposition of type t.

Assuming that in a transitive clause such as Sandy likes Kim the NP
Sandy can be identified as subject and Kim as object (in English, this occurs
by virtue of their c-structure locations), the following derivation yields the
one available interpretation for this sentence.

Sandy′ : SUBJ e

λy λx.likes′(x, y) : OBJ e −◦ SUBJ e −◦ t Kim′ : OBJ e

λx.likes′(x,Kim′) : SUBJ e −◦ t

likes′(Sandy′,Kim′) : t

Following standard treatments of feature structures, re-entrancies are
described by path equations f1 . . . fm = g1 . . . gn, which permit a resource
structure f1 . . . fmα to be transformed to g1 . . . gnα. For example, Subject
Raising in LFG is described in terms of a re-entrancy between the matrix

7

subject position and the complement’s subject position, licensed by a path
equation associated with the Subject Raising verb. The lexical items in the
sentence Sandy seems happy would be associated with the lexical entries (9),
(11) and (12).

λP.seems′(P) : XCOMP t −◦ t, SUBJ = XCOMP SUBJ (11)

λx.happy′(x) : SUBJ e −◦ t (12)

Again, assuming that Sandy and happy are identified as filling the SUBJ and
XCOMP grammatical functions respectively, the following deduction shows
how the available interpretation for Sandy seems happy can be obtained.

λP.seems′(P) :
XCOMP t −◦ t

λx.happy′(x) :
XCOMP(SUBJ e −◦ t)

λx.happy′(x) :
XCOMP SUBJ e −◦ XCOMP t

∗
Sandy′ :
SUBJ e SUBJ e = XCOMP SUBJ e

Sandy′ : XCOMP SUBJ e

happy′(Sandy′) : XCOMP t

seems′(happy′(Sandy′)) : t

The inference labelled ‘∗’ requires the grammatical relation XCOMP to
distribute over the implication operator ‘−◦’.

3 R-LFG: a simplification of LFG

The architectural simplification of R-LFG is best appreciated when com-
pared with that of standard LFG together with the linear logic semantics
augmentation of Dalrymple et. al. This section starts by sketching the ar-
chitecture of standard LFG, and then presents the revised architecture of
R-LFG.

3.1 The architecture of standard LFG

Figure 1 shows the architecture of this “standard” LFG. The components of
LFG as presented by Kaplan and Bresnan (1982) are shown inside the dotted
box in this figure, and the linear logic machinery for semantic interpretation
posited by Dalrymple et. al. is depicted outside this box: see these references
for further details.

In LFG, a syntactic description of an utterance is taken to be a pair
constiting of a c-structure and an f-structure.2 The yield of the c-structure

2There are proposals for additional structures, which for simplicity are ignored here.

8

defines

minimal f-structures

semantic interpretation

glue language formula

semantic mapping

linear logic proof

f-description

phonological form

yields

c-structure

LexiconSyntactic Rules

generates

constraint filter

minimal f-structures

Figure 1: The architecture of standard LFG. The linear logic semantics
component is shown outside the dotted box.

9

tree determines the phonological form of the sentence it describes.
The c-structure/f-structure pairs generated by an LFG are determined

by the following procedure. The syntactic rules and lexical entries of an LFG
together generate a set of c-structure trees, each of which is paired with a
formula called an f-description which identifies which (if any) f-structures
this c-structure can be paired with. The f-descriptions are boolean com-
binations of equations. These equations come in two kinds: defining and
constraining equations.

The simplest account of the relationship between f-descriptions and the
f-structures they describe seems to be procedural, following Kaplan and
Bresnan (1982). First, the f-description is expanded into Disjunctive Normal
Form (DNF) and the f-structure solution to each conjunct is determined as
follows. The constraining equations are temporarily ignored (i.e., replaced
with true) and if the resulting formula is satisfiable and has a unique minimal
satisfying f-structure, that f-structure is a candidate solution to the conjunct.
This candidate solution is a (true) solution to the conjunct just in case it
also satisfies the formula obtained by replacing each constraining equation
in the conjunct with corresponding defining equations. The set of solutions
to an f-description is the union of the set of solutions to each conjunct of its
DNF, so the f-description determines a finite number of f-structures.3

3 To appreciate some of the difficulties in giving a declarative treatment of LFG’s
constraint equations, consider a treatment of Case marking in which subject NPs are
optionally assigned a nominative Case feature NOM, such as the Andrews (1982) analysis
of Icelandic quirky case marking discussed in section 5.2, using the following LFG syntactic
rule.

S →

NP
(↑ SUBJ) =↓

((↑ SUBJ CASE) = NOM)

VP
↑=↓

The parentheses surrounding the lower equation annotating the NPindicates that this
defining equation is optional, reflecting the fact that the subject NPis only optionally
assigned nominative case (as it may be assigned a ‘quirky’ non-nominative case by the verb,
as explained below). This annotation presumably abbreviates the following disjunction:

(↑ SUBJ CASE) = NOM∨true

Clearly replacing this disjunction with true does not change the set of minimal models
for any f-description which contains it, so the equation itself has no effect on the minimal
models, and hence cannot result in the satisfaction of any constraint equations. Clearly
this is not the intended interpretation: the “purpose” of this equation is to provide a Case
feature to satisfy the requirements of the subject NP.

Kaplan and Bresnan (1982) do not discuss disjunction, but it appears they intend
disjunctions to be interpreted as an abbreviatory convention, i.e., that their process applies
only to individual conjunctions after expansion to a Disjunctive Normal Form (DNF). Thus

10

Syntactic Rules

c-structure

phonological form f-term

type well-formedness proof

proof

generates

Lexicon

labelling

= semantic interpretation

Figure 2: The architecture of R-LFG.

Dalrymple et. al. use these f-structures as the input to their semantic
interpretation procedure. Certain elements in an f-structure are associated
with formula in a glue language, which is an amalgam of linear logic and
classical first-order logic, in effect mapping each f-structure into a formula of
the glue language For semantic interpretation to succeed this glue language
formula must derive a term with the type of a saturated proposition: the
argument of this term is the semantic interpretation of the sentence.

3.2 The architecture of R-LFG

The architecture of R-LFG is depicted in Figure 2. The most striking dif-
ference between LFG and R-LFG is that R-LFG does not contain an inde-
pendent level of f-structure representation, since the same mechanisms used
for semantic interpretation are also used to account for syntactic feature
dependencies. Given that it is a simpler architecture, it should be preferred
on grounds of parsimony.

The lexical entries and syntactic rules of R-LFG generate c-structure/f-
term pairs in the same way that they generate c-structure/f-description pairs
in LFG. In LFG several steps are required to obtain the f-structures that
serve as the input to semantic interpretation from the f-descriptions. How-

their treatment, while not falling foul of the problem just noted, involves a rather curious
mixture of proof-theoretic devices (e.g., DNF expansion) and model-theoretic devices (e.g.,
focussing on minimal models).

11

ever, in R-LFG the f-term serves as the input to semantic interpretation di-
rectly. Thus in R-LFG the linguistic effects of f-structure constraints must
be obtained by other means, viz., the same logical mechanisms used for
semantic interpretation.

As explained below, these logical mechanisms enforce a resource account-

ing which ensures that every predicate combines with an appropriate number
of arguments and that every non-root semantic unit appears as the argu-
ment of some predicate. The semantic interpretation itself is determined by
the pattern of predicate-argument combination via a Curry-Howard corre-
spondence, as explained in more detail in Johnson (1997).

This same resource accounting mechanism is also used to describe feature
dependencies. Purely syntactic features with no semantic content differ
from semantically interpreted elements only in that they are semantically
vacuous, i.e., given trivial interpretations which are systematically ignored
by any functors which take them as arguments.

The resource logic used here differs considerably from the glue language
used by Dalrymple et. al. That language includes first-order terms with
equality, which can be used to encode feature structure unification in the
manner of e.g., Definite Clause Grammars (see Shieber (1986) for a de-
scription of the relationship between the first-order terms of Definite Clause
Grammars and attribute-value “unification” grammars) and hence directly
simulate f-structure attribute-value constraints. While this would provide a
straightforward way to encode f-structure constraints in the glue language,
it is not clear that such an approach would constitute a real simplification
of LFG, rather than just a reshuffling of its complexity.

For this reason, R-LFG uses a much simpler resource logic than the glue
language of Dalrymple et. al. Inspired by recent work in Categorial Gram-
mar such as Morrill (1994), the resource logic is propositional modal logic
that encodes the types of the semantic objects being manipulated, and the
semantic interpretation itself is provided by a Curry-Howard correspondence
between proofs and λ-terms (Girard, Lafont, and Taylor, 1989). As van Ben-
them (1995) demonstrates, a wide variety of substructural logics possess a
Curry-Howard correspondence, so the requiremnt that semantic interpreta-
tion is obtained in this way does not identify a particular logic. Rather, the
precise logic used should be chosen to best fit the linguistic phenomena de-
scribed by the theory. Moortgat (1997) develops the theory of propositional
multimodal logics used here. The reader is referred to Johnson (1997) for
the full details of R-LFG.

12

4 Describing agreement relationships with LFG

This section argues that Lexical-Functional grammarians typically use the
formal devices of LFG to manipulate features as resources that are assigned
and checked. It introduces two methods often used for describing agreement
relationships in LFGs. It turns out that one method, which crucially relies
on “constraining equations”, can be viewed as describing agreement in terms
of resource dependencies. Thus resource based accounts of agreement are
not a new innovation of R-LFG, but are already a familiar part of LFG. The
principal claim behind R-LFG is that all linguistic dependencies can be ex-
pressed in this manner, and that the explicit resource-orientation of R-LFG
simplifies and clarifies the nature of the linguistic dependencies concerned.

As sketched above and explained in more detail in Kaplan and Bresnan
(1982), LFG’s f-descriptions contain two different kinds of equations. A
defining equation instantiates the value of an attribute, while a constraining
equation checks that a value is instantiated by a defining equation elsewhere
in the f-description. The linguistic dependencies involved in simple agree-
ment can be described using defining equations alone, or by using a mixture
of defining and constraining equations. This latter method has a natural
resource interpretation.

To keep things clear, the two methods for describing agreement relation-
ships are explained using the same examples (13).

(13) a. Sandy snores.

b. Professors snore.

Both methods of describing agreement relationships require that the agree-
ing items (in (13a), Sandy and snores) are capable of constraining the value
of the same f-structure element; this is usually achieved by defining equations
associated with syntactic rules. The agreeing items both impose constraints
the value of that f-structure element, thus ensuring that only compatible
items can appear simultaneously in a syntactic structure.

4.1 Agreement using defining equations alone

In this method, both agreeing items constrain the shared f-structure element
using defining equations. For example, the grammar fragment in (14–18)
generates exactly the two sentences in (13). The c-structure and f-structure
generated by this fragment for (13a) is depicted in Figure 3.

13

S

NP

Sandy

VP

V

snores









SUBJ

[

NUM SG

PRED ‘Sandy’

]

PRED ‘snore〈(↑ SUBJ)〉’









Figure 3: The c-structure and f-structure for Sandy snores generated by the
fragment (14–18).

Sandy NP (↑ PRED) = ‘Sandy’
(↑ NUM) = SG

(14)

Professors NP (↑ PRED) = ‘professor’
(↑ NUM) = PL

(15)

snores VP ↑ PRED) = ‘snore〈(↑ SUBJ)〉’
(↑ SUBJ NUM) = SG

(16)

snore VP ↑ PRED) = ‘snore〈(↑ SUBJ)〉’
(↑ SUBJ NUM) = PL

(17)

S −→ NP
(↑ SUBJ) =↓

VP
↑=↓

(18)

The lexical entries for subject NPs require that the value of their NUM

attribute is SG or PL as appropriate. In addition, the underlined equation
in each verb’s lexical entry also requires that this value is appropriate for
the verb’s inflection. If the subject and the verb require different values
for this f-structure element (as in the ungrammatical *Professors snores),
the corresponding f-description will require this element to be equal to two
different values (e.g., SG and PL). However, the well-formedness conditions
on f-structures do not permit this (Kaplan and Bresnan, 1982; Johnson,
1995) so the f-descriptions associated with such sentences are inconsistent,
and the sentences themselves are correctly predicted to be ungrammatical.

Thus this method functions by arranging for ungrammatical sentences to
be associated with an inconsistent f-description. This observation is in fact
quite general: if all grammatical relationships are described using defining

14

equations (i.e., if we restrict attention to the monotonic constraints) then
the only way such an equation can have a grammatical “effect” is by being
inconsistent with other equations, i.e., by “causing” ungrammaticality.

More precisely, suppose we identify a subset of the elements of a f-
structure as follows. The semantically interpreted elements are those which
serve as the input to the semantic interpretation procedure (in the frame-
work of Dalrymple et. al. these elements are associated with glue language
formulae at some stage during the interpretation process). The idea is the
semantically uninterpreted elements can be deleted from an f-structure with-
out changing its semantic interpretation. In a typical LFG, the values of at-
tributes such as PRED, SUBJ, OBJ, etc., are semantically interpreted, while
the values of CASE and GENDER (in a grammatical gender language) are
not semantically interpreted.

Now consider a “pure unification” grammar without non-monotonic de-
vices such as “constraining equations”, e.g., in which all equations are defin-
ing equations, such as the PATR grammars of Shieber (1986). These are
grammars in which all linguistic relationships are expressed with defining
equations. It is possible to show that in such a grammar, if an equation
which equates only non-semantic values is not inconsistent with other equa-
tions on some input, then deleting it from the grammar does not affect the
language generated or the interpretations assigned. (A similiar observation
holds in monotonic grammars such as HSPG).

This means that if all grammatical relationships are described using
defining equations, a nonsemantic feature defining equation only has an
effect on the language generated if somewhere else in the grammar there are
defining equations that are inconsistent with this one. For example, there
is no point in adding a defining equation that introduces an attribute that
does not appear elsewhere in the grammar, such as

(↑ HISTORICAL-ORIGIN) = ROMANCE (19)

unless other defining equations that can possibly be inconsistent with it
are also introduced. But in order to be inconsistent with (19) these other
equations must require the attribute’s value to be different to the value
specified in the former equation, e.g.,

(↑ HISTORICAL-ORIGIN) = GERMANIC .

Thus with defining equations alone, different grammatical properties are
based on feature oppositions or constrasts. The formal machinery of these

15

monotonic “pure unification” grammars does not completely support non-
constrastive or “privative” feature values.

Indeed, f-structures seem to have been specifically designed to enable
systems of defining equations to be inconsistent. For example, if we removed
either the “functionality” axiom (which requires attributes to be single-
valued) or the “constant-constant” clash axiom (which specifies that distinct
constants denote distinct f-structure elements) from the formal definition of
f-structures, then f-descriptions such as

(f CASE) = ACC, (f CASE) = DAT

would not be inconsistent. R-LFG does not possess either the functionality
axiom or the constant-constant clash axiom, and hence it does permit a
single constituent to bear two such distinct features, so long as both are
checked or consumed as described below.

4.2 Agreement using defining and constraining equations

Writers of LFGs often employ constraining equations in order to describe
asymmetric linguistic relationships. The subject-verb agreement examples
(13) would be described using this method by replacing the lexical entries
(16–17) with the following.

snores VP ↑ PRED) = ‘snore〈(↑ SUBJ)〉’
(↑ SUBJ NUM) =c SG

(20)

snore VP ↑ PRED) = ‘snore〈(↑ SUBJ)〉’
(↑ SUBJ NUM) =c PL

(21)

These entries differ from the previous ones in that the underlined defining
equations have been replaced with constraining equations.

While these two fragments both generate the same language in this case,
in general the two methods for describing agreement behave quite differently.
For example, if an NP’s f-description contains the constraint equation

(↑ CASE) =c ACC (22)

then this NP must be independently “assigned” a value for the Case feature
in order for the f-structure to be well-formed.

This method behaves quite differently to the method that only uses
defining equations. It does not rely on feature oppositions in the same

16















SUBJ

[

PRED ‘Sandy’
NUM SG

]

SUBJ
[

NUM =c SG
]

PRED ‘snore〈(↑ SUBJ)〉’















Figure 4: A alternative minimal f-structure solution to the f-description for
(13a) obtained by relaxing the functionality requirements on f-structures.
Note that this f-structure never the less does not satisfy the constraining
equations expressing subject-verb agreement.

way that the defining equation method does. For example, the constraint
equation (22) requiring that the NP receive an ACC case value does not rely
on the existence of other Case values besides ACC; it functions just as well if
ACC is the only Case value used in the grammar. That is, while a defining
equation ensures that an attribute has one value rather than another, a
constraining equation ensures in addition that the feature has in fact been
given a value independently. Thus this method more fully supports privative
features than the defining equation method does.

Further, the constraining equation method does not rely on the function-
ality axiom or the constant-constant clash axioms in the same way that the
defining equation method does. For example, even if the functionality re-
quirement on f-structures were relaxed so that the defining equations in the
f-description for (13a) could have the second minimal f-structure solution
depicted in Figure 4 besides the one depicted in Figure 3, that f-structure
would fail to satisfy the constraining equation expressing subject-verb agree-
ment, and so would be ill-formed for independent reasons.

In fact, feature structures in R-LFG behave very much in this way. While
attributes are permitted to be single-valued, no feature structure axiom
forces them to be so. But since grammatical relationships are described in a
way very similiar to the constraining equation method, in general the gram-
matical requirements of predicates will require that attributes are single-
valued.

17

4.3 Resource management in LFG

The constraining equation method of describing agreement relationships can
be described in terms of resources, where the resource is the feature value of
the shared f-structure entity. Each such feature value is is produced by one

or more defining equations, and is consumed by zero or more constraining
equations. This pattern of resource management is formalized by Intuition-
istic Logic.

Interestingly, the special properties LFG endows the values of PRED at-
tributes with provides them with special resource management properties
also. The values of PRED attributes must be produced by exactly one ar-
gument, and must be consumed by one or more predicates. The logic LPC
developed by van Benthem (1995) formalizes this resource management.

Thus LFG already incorporates a number of mechanisms which can be
seen as performing resource management. R-LFG attempts to describe all
syntactic relationships in terms of such resource management. Identifying
the appropriate resource management mode for a particular grammatical
relationship is a key step in developing its R-LFG description.

5 Resource accounting in R-LFG

Johnson (1997) formally defines R-LFG’s f-terms and presents a Gentzen
sequent calculus that describes the resource management relationships be-
tween features. It also presents labelled deduction systems for describing
the mappings from c-structures to f-terms, and semantic intepretation from
f-terms. That paper should be consulted for the technical details of R-LFG;
this section presents that material in an informal (and hopefully more ac-
cessible) manner.

An f-formula is an expression that indicates the type of a constituent,
or more generally, a single resource. The semantic type of a constituent
can be determined from its f-formula, but just as in the categorial grammar
example above, f-formulae also specify additional syntactic constraints.

Following Morrill (1994), we distinguish semantically contentful types
from semantically impotent types. The basic semantically contentful types
e, t, etc., are f-formulae (these are the types of individuals and truth val-
ues respectively), as are the basic semantically impotent types NOM, ACC,
etc., (which are interpreted by constants, and whose value is systematically
ignored by any function that takes them as an argument). The full set of
f-formulae are obtained by closing these under the following operations.

18

If φ is an f-formula then fφ is also an f-formula, where f is an attribute;
it denotes the result of embedding φ under the attribute f .

If φ1, φ2 are f-formulae then φ1 −◦ φ2 is also an f-formula; it is a linear
implication which consumes φ1 to produce φ2.

The f-formulae are related to the more usual types of model-theoretic
semantics is defined by the mapping (·)\ and a new type constant ∅ for the
semantically impotent f-formulae.

(φ)\ = φ if φ is a semantically contentful basic type,

(φ)\ = ∅ if φ is a semantically impotent basic type,

(fφ)\ = (φ)\ where f is an attribute, and

(φ1 −◦ φ2)
\ = (φ2)

\ if (φ1)
\ = ∅, and (φ1)

\ → (φ2)
\ otherwise.

For example, the natural type of an f-formula for an NP requiring a nomi-
native case marking is (NOM −◦ e)\ = e. In general, it is required that the
type of λ-term labelling an f-formulae φ (i.e., giving the constituent’s seman-
tic interpretation) be of type (φ)\. (Semantically impotent f-formulae are
not labelled with λ-terms, as they have no natural semantic interpretation).

F-formulae are the building blocks of f-terms. Informally, a f-term is a
graph-structured configuration of one or more constituents, or more gen-
erally, resources. F-formulae are f-terms, and if α, α1, . . . , αn are f-terms
then:

α1, . . . , αn is the multiset of resource structures {α1, . . . , αn} (order is unim-
portant in a multiset, but the number of times an element appears is
important),

f α is the result of embedding the structure α under the attribute f ,4

f1 . . . fm = g1 . . . gn is a path equation which restructures an f-term by mov-
ing a resource structure embedded under the sequence of attributes
f1 . . . fm so that it is located under the sequence of attributes g1 . . . gn,
and

(α) is an optional occurence of the structure α.

4Johnson (1997) follows Moortgat (1997) in introducing a separate punctuation symbol
to distinguish modal structures in f-terms from modal operators in f-formulae, but here
we rely on context to distinguish these two usages.

19

An f-term describes a graph structure of constituents, or more generally,
resources. The f-term associated with a sentence is required to simplify to a
single resource of type t in order for the sentence to be grammatical. (This
single requirement subsumes both the requirement that the f-description be
satisfiable and the requirement that the Linear Logic glue formula simplify
to an expression of type t in standard LFG). An f-term simplifies by ap-
plying linear implications, restructuring using path equations, distributing
attributes over multisets, and either deleting optional elements or replacing
them with their non-optional counterpart.

Attributes are permitted, but not required, to distribute and factor over
multisets. That is, the following biimplication holds, where f is an attribute
and α1 and α2 are f-terms:

f(α1, α2) ⇔ (f α1), (f α2).

Unlike LFG, R-LFG does not require that attributes are single-valued, nor
does it enforce a constant-constant clash. Every f-term is “satisfiable” in that
it represents some configuration of resources; grammaticality is determined
by whether those resources can combine to produce a single element of type
t (the type of a saturated proposition).

5.1 Nominative Case marking in English

A simple R-LFG fragment which describes structural nominative case as-
signment to subject NPs is presented below. The lexical entry for the nomi-
native Case marked subject NP Sandy in (23) requires it to consume a NOM

case resource in order to produce a resource of type e, and the lexical en-
try for the verb snores in (24) requires it to consume a resource of type e
embedded within a SUBJ attribute in order to produce a resource of type t.
The syntactic rule (25) specifies how the f-terms associated with the NP and
VP (referred to by the meta-variable ‘↓ ’ just as in LFG) are to be combined
to produce the f-term for the S. In this case, a multiset consisting of the
NP’s f-term and a NOM case resource is embedded within a SUBJ attribute,
which together with the f-term associated with the VP yields the multiset
f-term associated with the S.

Sandy NP Sandy′ : NOM −◦ e (23)

snores VP λx.snores′(x) : SUBJ e −◦ t (24)

20

S

NP

Sandy

VP

V

snores









SUBJ

[

Sandy′ : NOM −◦ e
NOM

]

λx.snores′(x) : SUBJ e −◦ t









Figure 5: The c-structure and f-term for She snores generated by the frag-
ment (23–25). The f-term simplifies straightforwardly to type t, yielding the
semantic labelling snores′(Sandy′).

S −→ NP
SUBJ(NOM, ↓)

VP
↓

(25)

This fragment generates the c-structure and f-term depicted in Figure 5.
The f-term simplifies to type t in the following steps:

Sandy′ : SUBJ(NOM −◦ e)

Sandy′ : SUBJ NOM −◦ SUBJ e SUBJ NOM

Sandy′ : e λx.snores′(x) : SUBJ e −◦ t

snores′(Sandy′) : t

5.2 Icelandic Quirky Case Marking

Quirky Case marking in Icelandic presents a more complex array of linguistic
data which exercises a wider range of f-term machinery. This construction
has proven difficult to encode in unification-based grammars, and has mo-
tivated several non-monotonic extensions to the basic unification grammar
machinery, such as LFG’s constraint equations and a complex inheritance
system in HPSG (Sag, 1995). The analysis presented here demonstrates how
the resource sensitivity of R-LFG provides a simple way to encode the LFG
analysis of Andrews (1982) without requiring recourse to complex extensions
to the basic machinery of R-LFG.

In Icelandic, subject NPs are usually case marked nominative, as in
(26a). However, a few verbs, such as vantar ‘lacks’ exceptionally case mark
their subject NPs with accusative or some other non-nominative “quirky”
case (26b). The subjects of subject raising verbs, such as vir´ist ‘seems’,

21

usually appear in nominative case (26c), but if the embedded verb is a
quirky case assigning verb then the matrix subject is assigned the quirky
case, rather than nominative (26d).

(26) a. drengurinn

the-boy.nom
kyssti

kissed
stúlkuna

the-girl.acc
‘The boy kissed the girl’

b. drengina

the-boys.acc
vantar

lacks
mat

food.acc
‘The boys lack food’

c. hann

he.nom
vir´ist
seems

elska

love
hana

her.acc
‘He seems to love her’

d. hana

her.acc
vir´ist
seems

vanta

lack
peninga

money.acc
‘She seems to lack money’

This pattern of data receives a straightforward informal account in terms
of case assignment if we make the following assumptions:

• All NPs must receive exactly one case,

• Quirky case marking verbs always assign a quirky case,

• Case is preserved in Raising and other grammatical operations, and

• Structural nominative case is only optionally assigned.

Thus if a subject NP receives a quirky case, then that must be the case
that it appears in. On the other hand, if the subject NP is not assigned a
quirky case, then the only case available is structural nominative case.

This account can be formalized in R-LFG as follows. The phrase struc-
ture rules for this Icelandic fragment are the following.

S −→ NP
SUBJ((NOM) , ↓)

VP
↓

(27)

VP −→ V
↓

(

NP
OBJ ↓

)(

VP
XCOMP ↓

)

(28)

22

drengurinn

the-boy.nom
kyssti

kissed
stúlkuna

the-girl.acc

V NP

VPNP

S
SUBJ

(NOM)

NOM −◦ e

ACC

ACC −◦ eOBJ

OBJ e −◦ SUBJ e −◦ t

Figure 6: The c-structure and f-term for the single clause non-quirky Ice-
landic example (26a) generated by (27–31).

The phrase structure rule (27) differs from the corresponding English rule
(25) in that it optionally embedds a NOM case under the SUBJ attribute.
The phrase structure rule (28) introduces a verb, an optional direct object
NP and an optional VP. It embedds the direct object NP’s f-term under
the OBJ attribute and the VP’s f-term under the XCOMP attribute, as is
standard in LFG.

The lexical entries (29–31) are required to generate the non-quirky single
clause example (26a). The c-structure and f-term associated with this ex-
ample are shown in Figure 6. It is straightforward to check that this f-term
reduces to t, labelled with kissed′(boy′, girl′).

drengurinn NP boy′ : NOM −◦ e (29)

stúlkuna NP girl′ : ACC −◦ e (30)

kyssti V λy λx.kissed′(x, y) : OBJ e −◦ SUBJ e −◦ t,
OBJ ACC

(31)

The single clause quirky case marked example is only slightly more com-
plex. It can be described with the three additional lexical entries (32–34).

drengina NP boys′ : ACC −◦ e (32)

mat NP food′ : ACC −◦ e (33)

vantar V λy λx.lacks′(x, y) : OBJ e −◦ SUBJ e −◦ t,
OBJ ACC, SUBJ ACC

(34)

The lexical entry for the quirky case marking verb vantar ‘lacks’ in (34)
differs from that for the non-quirky verb kyssti ‘kissed’ in that it assigns

23

drengina

the-boys.acc
vantar

lacks
mat

food.acc

V NP

VPNP

S
SUBJ

(NOM) , ACC

ACC −◦ e

ACC

ACC −◦ eOBJ

OBJ e −◦ SUBJ e −◦ t

Figure 7: The c-structure and f-term for the single clause quirky case exam-
ple (26b) generated by (27–34).

an accusative case to its subject (in the underlined part of the f-term) as
well as to its object. The c-structure and f-term for (26b) are depicted in
Figure 7. Again, it is straightforward to check that the f-term reduces to t,
and is labelled with the λ-term lacks′(boys′, food′). Note that if the subject
were replaced with a nominative NP the f-term would no longer reduce to
t, since the ACC case feature embedded under the SUBJ attribute could not
be consumed.

The formalization of the non-quirky case Subject Raising example (26c)
is very similiar to the standard LFG account of Subject Raising (Bresnan,
1982). The lexical entry (35) for the Raising verb vir´ist ‘seems’ contains
the path equation SUBJ = XCOMP SUBJ which permits resources embed-
ded under the SUBJ attribute to be restructured under the XCOMP SUBJ

attributes. In this example, a resource of type e is lowered into the embed-
ded clause. The f-term associated with this example is depicted in Figure 8.
(Here we ignore the complexities of pronominal binding, and treat the pro-
nouns simply as NPs that consume a nominative or accusative case resource).
It is straightforward to check that this reduces to t, and is labelled with the
λ-term seems′(loves′(he′, her′)).

vir´ist V λP.seems′(P) : XCOMP t −◦ t,
SUBJ = XCOMP SUBJ

(35)

elska V λy λx.love(x, y) : OBJ e −◦ SUBJ e −◦ t,
OBJ ACC

(36)

The syntactic rules and lexical entries introduced above that are inde-
pendently needed to account for quirky case marking in single clause con-

24





























SUBJ

[

NOM −◦ e
(NOM)

]

XCOMP t −◦ t

XCOMP













SUBJ
[]

SUBJ e −◦ t

OBJ

[

ACC −◦ e
ACC

]









































Figure 8: The f-term for the non-quirky Subject Raising example (26c)
generated by (27–36).





























SUBJ

[

ACC −◦ e
(NOM) , ACC

]

XCOMP t −◦ t

XCOMP













SUBJ
[]

SUBJ e −◦ t

OBJ

[

ACC −◦ e
ACC

]









































Figure 9: The f-term for the quirky case marked Subject Raising example
(26d) generated by (27–36).

structions and for Subject Raising without quirky case also correctly account
for the interaction of those two constructions, which was presented in (26d)
on page 22. The f-term for this example is shown in Figure 9.

Just as in the single clause quirky case marking example (26b), the sub-
ject NP is assigned both an accusative case and an optional nominative
case, so only an accusative subject NP can appear. If a nominative sub-
ject were inserted in matrix subject position it could consume the optional
nominative case resource, but the accusative case resource assigned by the
quirky verb to the subject would not be consumed, and so an f-term of
type t could not be derived. It is straight-forward to check that the f-term
depicted in Figure 9 simplifies to t, and that it is labelled with the λ-term

25

seems′(lack′(she′,money′)).

6 Conclusion

This paper has introduced a simplified version of LFG called R-LFG in
which a single representation called an f-term plays the role of both f-
description and f-structure. LFG’s f-structure well-formedness constraints
are re-expressed in terms of feature resource dependencies, which permits
them to be checked by the same mechanism that performs semantic interpre-
tation. It is not implausible that this can be done for many, if not most, LFG
analyses, as many standard LFG analyses already have a resource oriented
character, and it seems that the “core” LFG analyses of Raising, Control,
etc., can be straightforwardly reexpressed in R-LFG.

Even if it turns out that the R-LFG project is ultimately untenable—
perhaps it will be possible to demonstrate that some linguistically necessary
properties of f-structures simply cannot be adequately captured using the
resource logic machinery utilized for semantic interpretation—this research
may still contribute by providing an alternative perspective on feature in-
teractions in grammar and suggesting modifications or extensions to the
standard LFG framework.

References

Andrews, Avery D. 1982. The representation of Case in modern Icelandic.
In Joan Bresnan, editor, The Mental Representation of Grammatical

Relations. The MIT Press, Cambridge, Massachusetts, pages 427–502.

Bresnan, Joan. 1982. Control and complementation. In Joan Bresnan,
editor, The Mental Representation of Grammatical Relations. The MIT
Press, Cambridge, Massachusetts, pages 282–390.

Dalrymple, Mary, John Lamping, Fernando C. N. Pereira, and Vijay
Saraswat. 1995. Linear logic for meaning assembly. In Proceedings

of CLNLP, Edinburgh.

Dalrymple, Mary, John Lamping, Fernando C. N. Pereira, and Vijay
Saraswat. 1996a. A deductive account of quantification in LFG. In
Makoto Kanazawa, Christopher J. Piñón, and Henriette de Swart, edi-

26

tors, Quantifiers, Deduction, and Context. CSLI Publications, Stanford,
CA.

Dalrymple, Mary, John Lamping, Fernando C. N. Pereira, and Vijay
Saraswat. 1996b. Intensional verbs without type-raising or lexical ambi-
guity. In Jerry Seligman and Dag Westerst̊ahl, editors, Logic, Language

and Computation. Center for the Study of Language and Information,
Stanford, California, pages 167–182. Also in Proceedings of the Confer-
ence on Information-Oriented Approaches to Logic, Language and Com-
putation/Fourth Conference on Situation Theory and its Applications,
Saint Mary’s College of California, Moraga, California. June 1994.

Dalrymple, Mary, John Lamping, Fernando C. N. Pereira, and Vijay
Saraswat. 1996c. Quantifiers, anaphora, and intensionality. Journal

of Logic, Language, and Information, to appear.

Girard, Jean-Yves, Yves Lafont, and Paul Taylor. 1989. Proofs and Types,
volume 7 of Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, Cambridge, England.

Johnson, Mark. 1995. Logic and feature structures. In Mary Dalrymple
and Ronald M. Kaplan, editors, Formal Properties of Lexical-Functional

Grammar. CSLI Lecture Notes Series.

Johnson, Mark. 1997. A resource sensitive reinterpretation of lexical-
functional grammar. available via anonymous ftp from lx.cog.brown.edu.

Kaplan, Ronald M. and Joan Bresnan. 1982. Lexical-Functional grammar:
A formal system for grammatical representation. In Joan Bresnan, ed-
itor, The Mental Representation of Grammatical Relations. The MIT
Press, chapter 4, pages 173–281.

Kasper, Robert T. and William C. Rounds. 1990. The logic of unification
in grammar. Linguistics and Philosophy, 13(1):35–58.

Moortgat, Michael. 1997. Categorial type logics. In Johan van Benthem
and Alice ter Meulen, editors, Handbook of Logic and Language. The
MIT Press, Cambridge, Massachusetts, pages 93–178.

Morrill, Glyn V. 1994. Type-logical Grammar: Categorial Logic of Signs.
Kluwer Academic Publishers, Dordrecht.

27

Pereira, Fernando C.N. and Stuart M. Shieber. 1987. Prolog and Natural

Language Analysis. Number 10 in CSLI Lecture Notes Series. Chicago
University Press, Chicago.

Rounds, William C. 1997. Feature logics. In Johan van Benthem and Alice
ter Meulen, editors, Handbook of Logic and Language. The MIT Press,
Cambridge, Massachusetts, pages 475–533.

Sag, Ivan A. 1995. HPSG problem set 4: Icelandic case. Technical report,
The Center for the Study of Language and Information. Available as
http://hpsg.stanford.edu/hpsg/lecture-materials/pset4-icelandic.ps.

Shieber, Stuart M. 1986. An Introduction to Unification-based Approaches

to Grammar. CSLI Lecture Notes Series. Chicago University Press,
Chicago.

van Benthem, Johan. 1995. Language in Action: Categories, Lambdas and

Dynamic Logic. The MIT Press, Cambridge, Massachusetts.

28

