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Talk outline

• Why rerank the output of generative parsers?

• Features of a reranking parser

• Reranking and self-training
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Parsing in the late 1990s

• Parsers for hand-written grammars (LFG, HPSG, etc)

– linguistically rich, detailed representations

– uneven / poor coverage of English

– even simple sentences are highly ambiguous

– only ad hoc treatment of preferences

– could not be learnt from data

• Generative probabilistic parsers

– systematic treatment of preferences

– learnt from treebank corpora

– simple constituent structure representations

– wide (if superficial) coverage of English

• Could the two approaches be combined?
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Generative statistical parsers

• Generative statistical parsers (Bikel, Charniak, Collins) generate

each new node in parse conditioned on the structure already

generated: P(price|NN,NP, raised,VBD,VP, S)
S
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He

VP

VBD

raised

NP

the price

.

.

NNDT

• They assume each node is independent of all existing structure

except for nodes explicitly conditioned on ⇒ simple “relative

frequency” estimators (smoothed♦♦)

• Re-entrancies in LFG and HPSG violate these independence
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Abandoning independence assumptions

• Mathematically straight-forward to define models in which nodes

are not assumed independent (Abney 1997)

– Maximum Entropy, log-linear, exponential, Gibbs, . . .

• Once we have abandoned feature independence,

– parses need not be trees

∗ feature structures, minimalist derivations, . . .

– features can be any computable function of parses

• But simple “relative frequency” estimators no longer work

– estimating grammar from a corpus is a computationally very

difficult problem
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Generative parsers as log-linear models

S

NP

PRP

He

VP

VBD

raised

NP

the price

.

.

NNDT

• Define a feature fx,c for all possible nodes x and conditioning

contexts c

f(price,NN,NP,raised,VBD,VP,S)(t) is the number of times

(price,NN,NP, raised,VBD,VP,S) appears in parse t

• Let weight wx,c = log P(x|c)
w(price,NN,NP,raised,VBD,VP,S) =

log P(price|NN,NP, raised,VBD,VP, S)

• Then weighted sum of features is log probability of parse
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Conditional estimation

• Maximum likelihood joint estimation (used in generative parsers)

adjusts weights to make corpus parses score higher than all other

parses

• Without independence assumptions, requires summing over all

possible parses of all possible sentences (partition function)

⇒ estimation is computationally intractible♦♦

• But for parsing we only need conditional distribution P(t|s) of

parses given strings

– “only” requires parses for strings in training corpus

⇒ computationally tractable
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Conditional estimation

s f(t̂(s)) feature vectors of other parses for s

sentence 1 (1, 3, 2) (2, 2, 3) (3, 1, 5) (2, 6, 3)

sentence 2 (7, 2, 1) (2, 5, 5)

sentence 3 (2, 4, 2) (1, 1, 7) (7, 2, 1)

. . . . . . . . .

• Treebank tells us correct parse t̂(s) for sentence s

• Parser produces all possible parses for each sentence s

• Adjust feature weights w = (w1, . . . , wm) to make t̂(s) score as high

as possible relative to other parses for s
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Conditional vs joint estimation

P(t, s) = P(t|s)P(s)

• Joint MLE maximizes probability of training trees t and strings s

• Conditional MLE maximizes probability of trees given strings

– Conditional estimation uses less information from the data

– learns nothing from distribution of strings P(s)

– ignores unambiguous sentences (!)

• Joint estimation should be better (lower variance) if your model

correctly relates P(t|s) and P(s)

• Conditional estimation should be better if your model incorrectly

relates P(t|s) and P(s)
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Linguistic representations and features

• Probability of a parse t is completely determined by its feature

vector (f1(t), . . . , fm(t))

• The actual linguistic representation of parse t is irrelevant as long

as it is rich enough to calculate features f(t)

• Feature functions define the kinds of generalizations that the

learner can extract

– parses with the same feature values will be assigned the same

probability

– the choice of feature functions is as much a linguistic decision

than the choice of representations

• Features can be arbitrary functions ⇒ the linguistic properties

they encode need not be directly represented in the parse
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Reranking a generative parser’s parses

• Parses only need to be rich enough to recover the features

– WH-movement, raising and control need not be explicitly

marked in parses, just so long as we can identify them if

required

• LFG and similar parsers have problems with coverage and

implementation

• Generative parsers are reliable, and their parses are rich enough to

identify many linguistically interesting features

⇒ Why not work with a generative parser’s output instead?

(Collins 2000)
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Talk outline

• Why rerank the output of generative parsers?

• Features of a reranking parser

• Reranking and self-training
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Linear reranking framework

• Generative parser produces

n candidate parses Tc(s) for

each sentence s

• Map each parse t ∈ Tc(s) to a

real-valued feature vector

f(t) = (f1(t), . . . , fm(t))

• Each feature fj is associated

with a weight wj

• The highest scoring parse

t̂ = argmax
t∈Tc(s)

w · f(t)

is predicted correct

sentence s

tn. . .

. . .f(t1) f(tn)

w · f(t1) w · f(tn). . .

n-best parser

parses Tc(s)t1

feature vectors

parse scores

apply feature fns

linear combination

argmax

“best” parse for s
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Features for ranking parses

• Features can be any real-valued function of parse trees

• In these experiments the features come in two kinds:

– The logarithm of the tree’s probability estimated by the

Charniak parser

– The number of times a particular configuration appears in the

parse

• Which ones improve parsing accuracy the most? (can you guess?)
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Experimental setup

• Feature tuning experiments done using Collins’ split:

sections 2-19 as train, 20-21 as dev and 22 as test

• Tc(s) computed using Charniak 50-best parser

• Features which vary on less than 5 sentences pruned

• Optimization performed using LMVM optimizer from Petsc/TAO

optimization package

• Regularizer constant c adjusted to maximize f-score on dev
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f-score vs. n-best beam size
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• F-score of Charniak’s most probable parse = 0.896

• Oracle f-score (f-score of best parse in beam) of Charniak’s 50-best

parses = 0.965 (66% redn)
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Rank of best parse

Rank of best parse in n-best list
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• Charniak parser’s most likely parse is the best parse 41% of the

time

• Reranker picks Charniak parser’s most likely parse 58% of the time
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Evaluating features

• The feature weights are not that indicative of how important a

feature is

• The MaxEnt ranker with regularizer tuning takes approx 1 day to

train

• The averaged perceptron algorithm takes approximately 2 minutes

⇒ used in feature-comparison experiments here
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Lexicalized and parent-annotated rules

• Rule features largely replicate features already in generative parser

• A typical Rule feature might be (PP IN NP)
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Functional and lexical heads

• There are at least two sensible notions of head (c.f., Grimshaw)

– Functional heads: determiners of NPs, auxilary verbs of VPs,

etc.

– Lexical heads: rightmost Ns of NPs, main verbs in VPs, etc.

• In a log-linear model, it is easy to use both!
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n-gram rule features generalize rules

• Breaks up long treebank constituents into shorter (phrase-like?)

chunks

• Also includes relationship to head (e.g., adjacent? left or right?)
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Word and WProj features

• A Word feature is a word plus n of its parents (c.f., Klein and

Manning’s non-lexicalized PCFG)

• A WProj feature is a word plus all of its (maximal projection)

parents, up to its governor’s maximal projection
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Rightmost branch bias

• The RightBranch feature’s value is the number of nodes on the

right-most branch (ignoring punctuation) (c.f., Charniak 00)

• Reflects the tendancy toward right branching in English

• Only 2 different features, but very useful in final model!
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Constituent Heavyness and location

• Heavyness measures the constituent’s category, its (binned) size

and (binned) closeness to the end of the sentence
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Coordination parallelism

• A CoPar feature indicates the depth to which adjacent conjuncts

are parallel
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Tree n-gram

• A tree n-gram feature is a tree fragment that connect sequences of

adjacent n words, for n = 2, 3, 4 (c.f. Bod’s DOP models)

• lexicalized and non-lexicalized variants
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Edges and WordEdges

• A Neighbours feature indicates the node’s category, its binned

length and j left and k right lexical items and/or POS tags for

j, k ≤ 2
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Adding one feature class to baseline parser
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Removing one feature class from reranker
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Feature selection is hard

Averaged perceptron feature selection

f-score on sections 20-21
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• Greedy feature selection using averaged perceptron optimizing f-score

on sec 20–21

• All models also evaluated on section 24
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Results on all training data

• Features must vary on parses of at least 5 sentences in training

data

• In this experiment, 1,333,863 features

• Exponential model trained on sections 2-21

• Gaussian regularization p = 2, constant selected to optimize f-score

on section 22

• On section 23: recall = 91.0, precision = 91.8, f-score = 91.4

• Available from www.cog.brown.edu
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Talk outline

• Why rerank the output of generative parsers?

• Features of a reranking parser

• Reranking and self-training
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Self-training for discriminative parsing

Generative parser

Parse reranker

NTC text corpus

New generative parser model

Parsed NTC corpus Penn treebank x 5

• Improves performance from 91.3 to 92.1 f-score

• Self-training without the reranker does not improve performance

• Retraining the reranker on new first-stage model does not further

improve performance♦♦

• Would reparsing the NTC with improved parser further improve

performance?
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First-stage oracle scores

Model 1-best 10-best 50-best

Baseline 89.0 94.0 95.9

WSJ×1 + 250k 89.8 94.6 96.2

WSJ×5 + 1,750k 90.4 94.8 96.4

• Self-training improves first-stage generative parser’s oracle scores

• First-stage parser also became more decisive: mean of

log2(P(1-best) / P(50th-best)) increased from 11.959 for the

baseline parser to 14.104 for self-trained parser
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Which sentences improve?
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Self-trained WSJ parser on Brown

Sentences added Parser WSJ-reranker

Baseline Brown 86.4 87.4

Baseline WSJ 83.9 85.8

WSJ+50k 84.8 86.6

WSJ+250k 85.7 87.2

WSJ+1,000k 86.2 87.3

WSJ+2,500k 86.4 87.7

• Adding NTC data greatly improves performance on Brown corpus

(to a lesser extent on Switchboard)
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Self-training vs in-domain training

First-stage First stage alone WSJ-reranker Brown-reranker

WSJ 82.9 85.2 85.2

WSJ+NTC 87.1 87.8 87.9

Brown 86.7 88.2 88.4

• Both reranking and self-training are surprisingly

domain-independent

• Self-trained NTC parser with WSJ reranker is almost as good as a

parser/reranker completely trained on Brown♦♦
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Summary and conclusions

• (Re)ranking parsers can work with just about any features

• The details of linguistic representations don’t matter so long as

they are rich enough to compute your features from

• The choice of features is extremely important, and needs linguistic

insight

• Self-training works with reranking parsers (why?)

• Both reranking and self-training is (surprisingly)

domain-independent
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Sample parser errors
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