Features of Statistical Parsers

Mark Johnson Microsoft Research

Joint work with Eugene Charniak, Matt Lease and David McClosky Brown University

MSR-UW Computational Linguistics Colloquium, October 2006

Talk outline

- Why rerank the output of generative parsers?
- Features of a reranking parser
- Reranking and self-training

LFG parse "Let us take Tuesday the 15th"

Parsing in the late 1990s

- Parsers for hand-written grammars (LFG, HPSG, etc)
 - linguistically rich, detailed representations
 - uneven / poor coverage of English
 - even simple sentences are highly ambiguous
 - only ad hoc treatment of preferences
 - could not be learnt from data
- Generative probabilistic parsers
 - systematic treatment of preferences
 - learnt from treebank corpora
 - simple constituent structure representations
 - wide (if superficial) coverage of English
- Could the two approaches be combined?

Generative statistical parsers

• Generative statistical parsers (Bikel, Charniak, Collins) generate each new node in parse conditioned on the structure already generated: P(price|NN, NP, raised, VBD, VP, S)

- They assume each node is independent of all existing structure except for nodes explicitly conditioned on \Rightarrow simple "relative frequency" estimators (smoothed^{$\diamond \diamond \diamond$})
- \bullet Re-entrancies in LFG and HPSG violate these independence assumptions $5

Abandoning independence assumptions

- Mathematically straight-forward to define models in which nodes are not assumed independent (Abney 1997)
 - Maximum Entropy, log-linear, exponential, Gibbs, ...
- Once we have abandoned feature independence,
 - parses need not be trees
 - * feature structures, minimalist derivations, ...
 - features can be *any computable function* of parses
- But simple "relative frequency" estimators no longer work
 - estimating grammar from a corpus is a computationally very difficult problem

Generative parsers as log-linear models

• Define a feature $f_{x,c}$ for all possible nodes x and conditioning contexts c

 $f_{(\text{price},\text{NN},\text{NP},\text{raised},\text{VBD},\text{VP},\text{S})}(t)$ is the number of times (price, NN, NP, raised, VBD, VP, S) appears in parse t

• Let weight $w_{x,c} = \log P(x|c)$

 $w_{(\text{price},\text{NN},\text{NP},\text{raised},\text{VBD},\text{VP},\text{S})} = \log P(\text{price}|\text{NN},\text{NP},\text{raised},\text{VBD},\text{VP},\text{S})$

• Then weighted sum of features is log probability of parse

Conditional estimation

- Maximum likelihood joint estimation (used in generative parsers) adjusts weights to make corpus parses score higher than all other parses
- Without independence assumptions, requires summing over all possible parses of all possible sentences (partition function)
 ⇒ estimation is computationally intractible^{\$♦\$}
- But for parsing we only need *conditional distribution* P(t|s) of parses given strings
 - "only" requires parses for strings in training corpus
 - \Rightarrow computationally tractable

Conditional estimation

S	$f(\hat{t}(s))$	feature vectors of other parses for s
sentence 1	(1, 3, 2)	(2,2,3) $(3,1,5)$ $(2,6,3)$
sentence 2	(7, 2, 1)	(2, 5, 5)
sentence 3	(2, 4, 2)	$(1,1,7)\;(7,2,1)$
•••		• • •

- Treebank tells us correct parse $\hat{t}(s)$ for sentence s
- Parser produces all possible parses for each sentence s
- Adjust feature weights $w = (w_1, \ldots, w_m)$ to make $\hat{t}(s)$ score as high as possible relative to other parses for s

Conditional vs joint estimation

 $\mathbf{P}(t,s) = \mathbf{P}(t|s)\mathbf{P}(s)$

- Joint MLE maximizes probability of training trees t and strings s
- Conditional MLE maximizes probability of trees given strings
 - Conditional estimation uses less information from the data
 - learns nothing from distribution of strings P(s)
 - ignores unambiguous sentences (!)
- Joint estimation should be better (lower variance) if your model correctly relates P(t|s) and P(s)
- Conditional estimation should be better if your model incorrectly relates P(t|s) and P(s)

Linguistic representations and features

- Probability of a parse t is completely determined by its feature vector $(f_1(t), \ldots, f_m(t))$
- The actual linguistic representation of parse t is *irrelevant* as long as it is rich enough to calculate features f(t)
- Feature functions define the kinds of generalizations that the learner can extract
 - parses with the same feature values will be assigned the same probability
 - the choice of feature functions is as much a linguistic decision than the choice of representations
- Features can be arbitrary functions ⇒ the linguistic properties they encode *need not be directly represented in the parse*

Reranking a generative parser's parses

- Parses only need to be rich enough to recover the features
 - WH-movement, raising and control need not be explicitly marked in parses, just so long as we can identify them if required
- LFG and similar parsers have problems with coverage and implementation
- Generative parsers are reliable, and their parses are rich enough to identify many linguistically interesting features
- ⇒ Why not work with a generative parser's output instead? (Collins 2000)

Talk outline

- Why rerank the output of generative parsers?
- Features of a reranking parser
- Reranking and self-training

Linear reranking framework

- Generative parser produces $n \ candidate \ parses \ \mathcal{T}_c(s)$ for each sentence s
- Map each parse $t \in \mathcal{T}_c(s)$ to a real-valued *feature vector* $f(t) = (f_1(t), \dots, f_m(t))$
- Each feature f_j is associated with a *weight* w_j
- The *highest scoring* parse

$$\hat{t} = \operatorname*{argmax}_{t \in \mathcal{T}_c(s)} w \cdot f(t)$$

is predicted correct

Features for ranking parses

- Features can be any real-valued function of parse trees
- In these experiments the features come in two kinds:
 - The logarithm of the tree's probability estimated by the Charniak parser
 - The number of times a particular configuration appears in the parse
- Which ones improve parsing accuracy the most? (can you guess?)

Experimental setup

- Feature tuning experiments done using Collins' split: sections 2-19 as train, 20-21 as dev and 22 as test
- $\mathcal{T}_c(s)$ computed using Charniak 50-best parser
- Features which vary on less than 5 sentences pruned
- Optimization performed using LMVM optimizer from Petsc/TAO optimization package
- Regularizer constant c adjusted to maximize f-score on dev

f-score vs. n-best beam size

- F-score of Charniak's most probable parse = 0.896
- Oracle f-score (f-score of best parse in beam) of Charniak's 50-best parses = 0.965 (66% redn)

Rank of best parse

- Charniak parser's most likely parse is the best parse 41% of the time
- Reranker picks Charniak parser's most likely parse 58% of the time

Evaluating features

- The feature weights are not that indicative of how important a feature is
- The MaxEnt ranker with regularizer tuning takes approx 1 day to train
- The *averaged perceptron* algorithm takes approximately 2 minutes
- \Rightarrow used in feature-comparison experiments here

Lexicalized and parent-annotated rules

- Rule features largely replicate features already in generative parser
- A typical Rule feature might be (PPINNP)

Functional and lexical heads

- There are at least two sensible notions of head (c.f., Grimshaw)
 - *Functional heads:* determiners of NPs, auxiliary verbs of VPs, etc.
 - Lexical heads: rightmost Ns of NPs, main verbs in VPs, etc.
- In a log-linear model, it is easy to use both!

n-gram rule features generalize rules

- Breaks up long treebank constituents into shorter (phrase-like?) chunks
- Also includes *relationship to head* (e.g., adjacent? left or right?)

Word and WProj features

- A Word feature is a word plus *n* of its parents (c.f., Klein and Manning's non-lexicalized PCFG)
- A WProj feature is a word plus all of its (maximal projection) parents, up to its governor's maximal projection

Rightmost branch bias

- The RightBranch feature's value is the number of nodes on the right-most branch (ignoring punctuation) (c.f., Charniak 00)
- Reflects the tendancy toward right branching in English
- Only 2 different features, but very useful in final model!

Constituent Heavyness and location

• Heavyness measures the constituent's category, its (binned) size and (binned) closeness to the end of the sentence

> 5 words

=1 punctuation

Coordination parallelism

• A CoPar feature indicates the depth to which adjacent conjuncts are parallel

Tree *n*-gram

- A tree *n*-gram feature is a tree fragment that connect sequences of adjacent *n* words, for n = 2, 3, 4 (c.f. Bod's DOP models)
- lexicalized and non-lexicalized variants

Edges and WordEdges

• A Neighbours feature indicates the node's category, its binned length and j left and k right lexical items and/or POS tags for $j,k\leq 2$

> 5 words

Adding one feature class to baseline parser

Removing one feature class from reranker

Feature selection is hard

- Greedy feature selection using *averaged perceptron* optimizing f-score on sec 20–21
- All models also evaluated on section 24

Results on all training data

- Features must vary on parses of at least 5 sentences in training data
- In this experiment, 1,333,863 features
- Exponential model trained on sections 2-21
- Gaussian regularization p = 2, constant selected to optimize f-score on section 22
- On section 23: recall = 91.0, precision = 91.8, f-score = 91.4
- Available from www.cog.brown.edu

Talk outline

- Why rerank the output of generative parsers?
- Features of a reranking parser
- Reranking and self-training

Self-training for discriminative parsing

- *Improves performance* from 91.3 to **92.1 f-score**
- Self-training without the reranker does not improve performance
- Retraining the remarker on new first-stage model does not further improve performance $\diamondsuit \diamondsuit$
- Would reparsing the NTC with improved parser further improve performance?

First-stage oracle scores

Model	1-best	10-best	50-best
Baseline	89.0	94.0	95.9
$WSJ \times 1 + 250k$	89.8	94.6	96.2
WSJ \times 5 + 1,750k	90.4	94.8	96.4

- Self-training improves first-stage generative parser's oracle scores
- First-stage parser also became more decisive: mean of log₂(P(1-best) / P(50th-best)) increased from 11.959 for the baseline parser to 14.104 for self-trained parser

Which sentences improve?

Self-trained WSJ parser on Brown

Sentences added	Parser	WSJ-reranker
Baseline Brown	86.4	87.4
Baseline WSJ	83.9	85.8
WSJ+50k	84.8	86.6
WSJ+250k	85.7	87.2
WSJ+1,000k	86.2	87.3
WSJ+2,500k	86.4	87.7

• Adding NTC data greatly improves performance on Brown corpus (to a lesser extent on Switchboard)

Self-training vs in-domain training

First-stage	First stage alone	WSJ-reranker	Brown-reranker
WSJ	82.9	85.2	85.2
WSJ+NTC	87.1	87.8	87.9
Brown	86.7	88.2	88.4

- Both reranking and self-training are surprisingly domain-independent
- Self-trained NTC parser with WSJ reranker is almost as good as a parser/reranker completely trained on Brown^{♦♦}

Summary and conclusions

- (Re)ranking parsers can work with just about any features
- The details of linguistic representations don't matter so long as they are rich enough to compute your features from
- The choice of features is extremely important, and needs linguistic insight
- Self-training works with reranking parsers (why?)
- Both reranking and self-training is (surprisingly) domain-independent

Sample parser errors

