
Features of Statistical Parsers

Mark Johnson

Microsoft Research

Joint work with

Eugene Charniak, Matt Lease and David McClosky

Brown University

MSR-UW Computational Linguistics Colloquium, October 2006

1

Talk outline

• Why rerank the output of generative parsers?

• Features of a reranking parser

• Reranking and self-training

2

LFG parse “Let us take Tuesday the 15th”
TURN

SEGMENT

ROOT

Sadj

S

VPv

V

let

NP

PRON

us

VPv

V

take

NP

DATEP

N

Tuesday

COMMA

,

DATEnum

D

the

NUMBER

fifteenth

PERIOD

.

SENTENCE ID BAC002 E

OBJ

9

ANIM +
CASE ACC
NUM PL
PERS 1
PRED PRO
PRON-FORM WE
PRON-TYPE PERS

PASSIVE −
PRED LET〈2,10〉9
STMT-TYPE IMPERATIVE

SUBJ

2

PERS 2
PRED PRO
PRON-TYPE NULL

TNS-ASP MOOD IMPERATIVE

XCOMP

10

OBJ

13

ANIM −

APP

NTYPE NUMBER ORD
TIME DATE

NUM SG
PRED fifteen

SPEC SPEC-FORM THE
SPEC-TYPE DEF

CASE ACC
GEND NEUT

NTYPE
GRAIN COUNT
PROPER DATE
TIME DAY

NUM SG
PERS 3
PRED TUESDAY

PASSIVE −
PRED TAKE〈9,13〉

SUBJ 9

3

Parsing in the late 1990s

• Parsers for hand-written grammars (LFG, HPSG, etc)

– linguistically rich, detailed representations

– uneven / poor coverage of English

– even simple sentences are highly ambiguous

– only ad hoc treatment of preferences

– could not be learnt from data

• Generative probabilistic parsers

– systematic treatment of preferences

– learnt from treebank corpora

– simple constituent structure representations

– wide (if superficial) coverage of English

• Could the two approaches be combined?

4

Generative statistical parsers

• Generative statistical parsers (Bikel, Charniak, Collins) generate

each new node in parse conditioned on the structure already

generated: P(price|NN,NP, raised,VBD,VP, S)
S

NP

PRP

He

VP

VBD

raised

NP

the price

.

.

NNDT

• They assume each node is independent of all existing structure

except for nodes explicitly conditioned on ⇒ simple “relative

frequency” estimators (smoothed♦♦)

• Re-entrancies in LFG and HPSG violate these independence

assumptions 5

Abandoning independence assumptions

• Mathematically straight-forward to define models in which nodes

are not assumed independent (Abney 1997)

– Maximum Entropy, log-linear, exponential, Gibbs, . . .

• Once we have abandoned feature independence,

– parses need not be trees

∗ feature structures, minimalist derivations, . . .

– features can be any computable function of parses

• But simple “relative frequency” estimators no longer work

– estimating grammar from a corpus is a computationally very

difficult problem

6

Generative parsers as log-linear models

S

NP

PRP

He

VP

VBD

raised

NP

the price

.

.

NNDT

• Define a feature fx,c for all possible nodes x and conditioning

contexts c

f(price,NN,NP,raised,VBD,VP,S)(t) is the number of times

(price,NN,NP, raised,VBD,VP,S) appears in parse t

• Let weight wx,c = log P(x|c)
w(price,NN,NP,raised,VBD,VP,S) =

log P(price|NN,NP, raised,VBD,VP, S)

• Then weighted sum of features is log probability of parse

7

Conditional estimation

• Maximum likelihood joint estimation (used in generative parsers)

adjusts weights to make corpus parses score higher than all other

parses

• Without independence assumptions, requires summing over all

possible parses of all possible sentences (partition function)

⇒ estimation is computationally intractible♦♦

• But for parsing we only need conditional distribution P(t|s) of

parses given strings

– “only” requires parses for strings in training corpus

⇒ computationally tractable

8

Conditional estimation

s f(t̂(s)) feature vectors of other parses for s

sentence 1 (1, 3, 2) (2, 2, 3) (3, 1, 5) (2, 6, 3)

sentence 2 (7, 2, 1) (2, 5, 5)

sentence 3 (2, 4, 2) (1, 1, 7) (7, 2, 1)

.

• Treebank tells us correct parse t̂(s) for sentence s

• Parser produces all possible parses for each sentence s

• Adjust feature weights w = (w1, . . . , wm) to make t̂(s) score as high

as possible relative to other parses for s

9

Conditional vs joint estimation

P(t, s) = P(t|s)P(s)

• Joint MLE maximizes probability of training trees t and strings s

• Conditional MLE maximizes probability of trees given strings

– Conditional estimation uses less information from the data

– learns nothing from distribution of strings P(s)

– ignores unambiguous sentences (!)

• Joint estimation should be better (lower variance) if your model

correctly relates P(t|s) and P(s)

• Conditional estimation should be better if your model incorrectly

relates P(t|s) and P(s)

10

Linguistic representations and features

• Probability of a parse t is completely determined by its feature

vector (f1(t), . . . , fm(t))

• The actual linguistic representation of parse t is irrelevant as long

as it is rich enough to calculate features f(t)

• Feature functions define the kinds of generalizations that the

learner can extract

– parses with the same feature values will be assigned the same

probability

– the choice of feature functions is as much a linguistic decision

than the choice of representations

• Features can be arbitrary functions ⇒ the linguistic properties

they encode need not be directly represented in the parse

11

Reranking a generative parser’s parses

• Parses only need to be rich enough to recover the features

– WH-movement, raising and control need not be explicitly

marked in parses, just so long as we can identify them if

required

• LFG and similar parsers have problems with coverage and

implementation

• Generative parsers are reliable, and their parses are rich enough to

identify many linguistically interesting features

⇒ Why not work with a generative parser’s output instead?

(Collins 2000)

12

Talk outline

• Why rerank the output of generative parsers?

• Features of a reranking parser

• Reranking and self-training

13

Linear reranking framework

• Generative parser produces

n candidate parses Tc(s) for

each sentence s

• Map each parse t ∈ Tc(s) to a

real-valued feature vector

f(t) = (f1(t), . . . , fm(t))

• Each feature fj is associated

with a weight wj

• The highest scoring parse

t̂ = argmax
t∈Tc(s)

w · f(t)

is predicted correct

sentence s

tn. . .

. . .f(t1) f(tn)

w · f(t1) w · f(tn). . .

n-best parser

parses Tc(s)t1

feature vectors

parse scores

apply feature fns

linear combination

argmax

“best” parse for s

14

Features for ranking parses

• Features can be any real-valued function of parse trees

• In these experiments the features come in two kinds:

– The logarithm of the tree’s probability estimated by the

Charniak parser

– The number of times a particular configuration appears in the

parse

• Which ones improve parsing accuracy the most? (can you guess?)

15

Experimental setup

• Feature tuning experiments done using Collins’ split:

sections 2-19 as train, 20-21 as dev and 22 as test

• Tc(s) computed using Charniak 50-best parser

• Features which vary on less than 5 sentences pruned

• Optimization performed using LMVM optimizer from Petsc/TAO

optimization package

• Regularizer constant c adjusted to maximize f-score on dev

16

f-score vs. n-best beam size

Beam size

O
ra

cl
e

f
-s

co
re

50403020100

0.98

0.96

0.94

0.92

0.9

• F-score of Charniak’s most probable parse = 0.896

• Oracle f-score (f-score of best parse in beam) of Charniak’s 50-best

parses = 0.965 (66% redn)

17

Rank of best parse

Rank of best parse in n-best list

F
ra

ct
io

n
of

se
n
te

n
ce

s

50403020100

0.5

0.4

0.3

0.2

0.1

0

• Charniak parser’s most likely parse is the best parse 41% of the

time

• Reranker picks Charniak parser’s most likely parse 58% of the time

18

Evaluating features

• The feature weights are not that indicative of how important a

feature is

• The MaxEnt ranker with regularizer tuning takes approx 1 day to

train

• The averaged perceptron algorithm takes approximately 2 minutes

⇒ used in feature-comparison experiments here

19

Lexicalized and parent-annotated rules

• Rule features largely replicate features already in generative parser

• A typical Rule feature might be (PP IN NP)

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

Heads

Ancestor

Context

Rule

20

Functional and lexical heads

• There are at least two sensible notions of head (c.f., Grimshaw)

– Functional heads: determiners of NPs, auxilary verbs of VPs,

etc.

– Lexical heads: rightmost Ns of NPs, main verbs in VPs, etc.

• In a log-linear model, it is easy to use both!

S

DT

A

NN

record

NN

date

VP

VBZ

has

RB

n’t

VP

VBN

been

VP

VBN

set

.

.

NP

functional

functional

lexical

21

n-gram rule features generalize rules

• Breaks up long treebank constituents into shorter (phrase-like?)

chunks

• Also includes relationship to head (e.g., adjacent? left or right?)

ROOT

S

NP

DT

The

NN

clash

VP

AUX

is

NP

NP

DT

a

NN

sign

PP

IN

of

NP

NP

DT

a

JJ

new

NN

toughness

CC

and

NN

divisiveness

PP

IN

in

NP

NP

NNP

Japan

POS

’s

JJ

once-cozy

JJ

financial

NNS

circles

.

.

Left of head, non-adjacent to head

22

Word and WProj features

• A Word feature is a word plus n of its parents (c.f., Klein and

Manning’s non-lexicalized PCFG)

• A WProj feature is a word plus all of its (maximal projection)

parents, up to its governor’s maximal projection

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

23

Rightmost branch bias

• The RightBranch feature’s value is the number of nodes on the

right-most branch (ignoring punctuation) (c.f., Charniak 00)

• Reflects the tendancy toward right branching in English

• Only 2 different features, but very useful in final model!

ROOT

WDT

That went

over

DT

the

JJ

permissible

NN

line

IN

for

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.PP

VP

S

NP

PP

NP

NP

VBD

IN

NP

ADJP

24

Constituent Heavyness and location

• Heavyness measures the constituent’s category, its (binned) size

and (binned) closeness to the end of the sentence

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

> 5 words =1 punctuation

25

Coordination parallelism

• A CoPar feature indicates the depth to which adjacent conjuncts

are parallel

ROOT

S

NP

PRP

They

VP

VP

VBD

were

VP

VBN

consulted

PP

IN

in

NP

NN

advance

CC

and

VP

VDB

were

VP

VBN

surprised

PP

IN

at

NP

NP

DT

the

NN

action

VP

VBN

taken

.

.

Isomorphic trees to depth 4

26

Tree n-gram

• A tree n-gram feature is a tree fragment that connect sequences of

adjacent n words, for n = 2, 3, 4 (c.f. Bod’s DOP models)

• lexicalized and non-lexicalized variants

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

27

Edges and WordEdges

• A Neighbours feature indicates the node’s category, its binned

length and j left and k right lexical items and/or POS tags for

j, k ≤ 2

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

> 5 words

28

Adding one feature class to baseline parser

-0.002

0

0.002

0.004

0.006

0.008

0.01

Sections 20-21
Section 22

29

Removing one feature class from reranker

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

Sections 20-21

Section 22

30

Feature selection is hard

Averaged perceptron feature selection

f-score on sections 20-21

f-
sc

or
e

on
se

ct
io

n
24

0.9110.910.9090.9080.9070.9060.9050.9040.9030.9020.901

0.908

0.906

0.904

0.902

0.9

0.898

0.896

0.894

0.892

• Greedy feature selection using averaged perceptron optimizing f-score

on sec 20–21

• All models also evaluated on section 24
31

Results on all training data

• Features must vary on parses of at least 5 sentences in training

data

• In this experiment, 1,333,863 features

• Exponential model trained on sections 2-21

• Gaussian regularization p = 2, constant selected to optimize f-score

on section 22

• On section 23: recall = 91.0, precision = 91.8, f-score = 91.4

• Available from www.cog.brown.edu

32

Talk outline

• Why rerank the output of generative parsers?

• Features of a reranking parser

• Reranking and self-training

33

Self-training for discriminative parsing

Generative parser

Parse reranker

NTC text corpus

New generative parser model

Parsed NTC corpus Penn treebank x 5

• Improves performance from 91.3 to 92.1 f-score

• Self-training without the reranker does not improve performance

• Retraining the reranker on new first-stage model does not further

improve performance♦♦

• Would reparsing the NTC with improved parser further improve

performance?
34

First-stage oracle scores

Model 1-best 10-best 50-best

Baseline 89.0 94.0 95.9

WSJ×1 + 250k 89.8 94.6 96.2

WSJ×5 + 1,750k 90.4 94.8 96.4

• Self-training improves first-stage generative parser’s oracle scores

• First-stage parser also became more decisive: mean of

log2(P(1-best) / P(50th-best)) increased from 11.959 for the

baseline parser to 14.104 for self-trained parser

35

Which sentences improve?

0 1 2 3 4 5

0
50

0
10

00
15

00
20

00

Unknown words

N
um

be
r

of
 s

en
te

nc
es

Better
No change
Worse

0 2 4 6 8 10

20
0

40
0

60
0

Number of INs

N
um

be
r

of
 s

en
te

nc
es

Better
No change
Worse

0 1 2 3 4 5

0
50

0
10

00
15

00
20

00

Number of CCs

N
um

be
r

of
 s

en
te

nc
es

Better
No change
Worse

0 10 20 30 40 50 60

20
40

60
80

10
0

Sentence length

N
um

be
r

of
 s

en
te

nc
es

 (
sm

oo
th

ed
)

Better
No change
Worse

36

Self-trained WSJ parser on Brown

Sentences added Parser WSJ-reranker

Baseline Brown 86.4 87.4

Baseline WSJ 83.9 85.8

WSJ+50k 84.8 86.6

WSJ+250k 85.7 87.2

WSJ+1,000k 86.2 87.3

WSJ+2,500k 86.4 87.7

• Adding NTC data greatly improves performance on Brown corpus

(to a lesser extent on Switchboard)

37

Self-training vs in-domain training

First-stage First stage alone WSJ-reranker Brown-reranker

WSJ 82.9 85.2 85.2

WSJ+NTC 87.1 87.8 87.9

Brown 86.7 88.2 88.4

• Both reranking and self-training are surprisingly

domain-independent

• Self-trained NTC parser with WSJ reranker is almost as good as a

parser/reranker completely trained on Brown♦♦

38

Summary and conclusions

• (Re)ranking parsers can work with just about any features

• The details of linguistic representations don’t matter so long as

they are rich enough to compute your features from

• The choice of features is extremely important, and needs linguistic

insight

• Self-training works with reranking parsers (why?)

• Both reranking and self-training is (surprisingly)

domain-independent

39

Sample parser errors

S

NP

PRP

He

‘‘

‘‘

VP

MD

will

RB

not

VP

AUX

be

VP

VBN

shaken

PRT

RP

out

PP

IN

by

NP

JJ

external

NNS

events

,

,

ADVP

RB

however

S

ADJP

JJ

surprising

,

,

JJ

alarming

CC

or

JJ

vexing

:

...

.

.

S

NP

PRP

He

‘‘

‘‘

VP

MD

will

RB

not

VP

AUX

be

VP

VBN

shaken

PRT

RP

out

PP

IN

by

NP

NP

JJ

external

NNS

events

,

,

ADJP

RB

however

JJ

surprising

,

,

JJ

alarming

CC

or

JJ

vexing

:

...

.

.

40

S

NP

JJ

Soviet

NNS

leaders

VP

VBD

said

SBAR

S

NP

PRP

they

VP

MD

would

VP

VB

support

NP

PRP$

their

NNP

Kabul

NNS

clients

PP

IN

by

NP

NP

DT

all

NNS

means

ADJP

JJ

necessary

:

--

CC

and

AUX

did

.

.

S

NP

JJ

Soviet

NNS

leaders

VP

VP

VBD

said

SBAR

S

NP

PRP

they

VP

MD

would

VP

VB

support

NP

PRP$

their

NNP

Kabul

NNS

clients

PP

IN

by

NP

NP

DT

all

NNS

means

ADJP

JJ

necessary

:

--

CC

and

VP

AUX

did

.

.

41

S

NP

NNP

Kia

VP

AUX

is

NP

NP

DT

the

ADJP

RBS

most

JJ

aggressive

PP

IN

of

NP

NP

DT

the

NNP

Korean

NNP

Big

NNP

Three

PP

IN

in

NP

NN

offering

NN

financing

.

.

S

NP

NNP

Kia

VP

AUX

is

NP

NP

DT

the

RBS

most

JJ

aggressive

PP

IN

of

NP

DT

the

NNP

Korean

NNP

Big

NNP

Three

PP

IN

in

S

VP

VBG

offering

NP

NN

financing

.

.

42

S

ADVP

NP

CD

Two

NNS

years

RB

ago

,

,

NP

DT

the

NN

district

VP

VBD

decided

S

VP

TO

to

VP

VB

limit

NP

DT

the

NNS

bikes

S

VP

TO

to

VP

VB

fire

NP

NNS

roads

PP

IN

in

NP

PRP$

its

CD

65,000

JJ

hilly

NNS

acres

.

.

S

ADVP

NP

CD

Two

NNS

years

IN

ago

,

,

NP

DT

the

NN

district

VP

VBD

decided

S

VP

TO

to

VP

VB

limit

NP

DT

the

NNS

bikes

PP

TO

to

NP

NP

NN

fire

NNS

roads

PP

IN

in

NP

PRP$

its

CD

65,000

JJ

hilly

NNS

acres

.

.

43

S

NP

DT

The

NN

company

ADVP

RB

also

VP

VBD

pleased

NP

NNS

analysts

PP

IN

by

S

VP

VBG

announcing

NP

NP

CD

four

JJ

new

NN

store

NNS

openings

VP

VBN

planned

PP

IN

for

NP

JJ

fiscal

CD

1990

,

,

S

VP

VBG

ending

NP

JJ

next

NNP

August

.

.

S

NP

DT

The

NN

company

ADVP

RB

also

VP

VBD

pleased

NP

NNS

analysts

PP

IN

by

S

VP

VBG

announcing

NP

NP

CD

four

JJ

new

NN

store

NNS

openings

VP

VBN

planned

PP

IN

for

NP

NP

JJ

fiscal

CD

1990

,

,

VP

VBG

ending

NP

JJ

next

NNP

August

.

.

44

S

CC

But

NP

NNS

funds

ADVP

RB

generally

VP

AUX

are

VP

ADVP

RB

better

VBN

prepared

NP

DT

this

NN

time

RP

around

.

.

S

CC

But

NP

NNS

funds

ADVP

RB

generally

VP

AUX

are

ADJP

RBR

better

JJ

prepared

ADVP

NP

DT

this

NN

time

RB

around

.

.

45

	Talk outline
	LFG parse ``Let us take Tuesday the 15th''
	Parsing in the late 1990s
	Generative statistical parsers
	Abandoning independence assumptions
	Generative parsers as log-linear models
	Conditional estimation
	Conditional estimation
	Conditional vs joint estimation
	Linguistic representations and features
	Reranking a generative parser's parses
	Talk outline
	Linear reranking framework
	Features for ranking parses
	Experimental setup
	f-score vs. n-best beam size
	Rank of best parse
	Evaluating features
	Lexicalized and parent-annotated rules
	Functional and lexical heads
	n-gram rule features generalize rules
	Word and WProj features
	Rightmost branch bias
	Constituent Heavyness and location
	Coordination parallelism
	Tree n-gram
	Edges and WordEdges
	Adding one feature class to baseline parser
	Removing one feature class from reranker
	Feature selection is hard
	Results on all training data
	Talk outline
	Self-training for discriminative parsing
	First-stage oracle scores
	Which sentences improve?
	Self-trained WSJ parser on Brown
	Self-training vs in-domain training
	Summary and conclusions
	Sample parser errors

