Bayesian Inference for PCFGs via Markov chain Monte Carlo

Mark Johnson, Thomas L. Griffiths and Sharon Goldwater

HLT/NAACL 2007

Introduction

- Bayesian inference for PCFGs
- Gibbs sampler for (\mathbf{t}, θ)
- Metropolis-Hastings collapsed sampler for t
- Application: Unsupervised morphological analysis of Sesotho verbs
- Conclusion

Goal and motivation

- Develop algorithms for Bayesian inference for Probabilistic Context-Free Grammars (PCFGs)
- Bayesian inference combines *likelihood* with *prior* information
 - bias learner toward sparse grammars
- The techniques presented here generalize to other generative models with branching structure
 - more complex parsing models (e.g., "Adaptor Grammars", a non-parametric extension of PCFGs)
 - Hidden Markov Models (a sampler that resamples all labels at once, cf. Neal 2006)

Probabilistic context-free grammars

The *probability of a tree t* is the product of probabilities of rules used to construct it

$$\mathbf{P}(t|\theta) = \prod_{r \in R} \theta_r^{f_r(t)}$$

where $f_r(t)$ is the number of times rule *r* appears in tree *t*.

The *probability of a string w* is the sum of probabilities of all trees with w as their yield

$$P(w|\theta) = \sum_{\substack{t:y(t)=w}} P(t|\theta)$$

$$R = \begin{cases} S \rightarrow NP VP \\ NP \rightarrow Al, \\ NP \rightarrow George \\ VP \rightarrow barks \\ VP \rightarrow snores \end{cases} \begin{pmatrix} \theta_{S \rightarrow NP VP} = 1.0 \\ \theta_{NP \rightarrow Al} = 0.5 \\ \theta_{NP \rightarrow George} = 0.5 \\ \theta_{VP \rightarrow barks} = 0.2 \\ \theta_{VP \rightarrow snores} = 0.8 \\ \end{cases} \begin{pmatrix} S \\ NP & VP \\ | & | \\ Al & barks \\ \end{pmatrix} = 0.1$$

Unsupervised inference for PCFGs

- Given rules *R* and corpus of strings **w**, infer:
 - rule probabilities θ
 - trees t for w
- Maximum likelihood, e.g. Inside-Outside/EM (a point estimate)

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \operatorname{P}(\mathbf{w}|\theta) \quad (EM)$$
$$\hat{\mathbf{t}} = \underset{\mathbf{t}}{\operatorname{argmax}} \operatorname{P}(\mathbf{t}|\mathbf{w}, \hat{\theta}) \quad (Viterbi)$$

Bayesian inference incorporates *prior* P(θ) and infers a *posterior distribution*

$$\frac{P(\theta|\mathbf{w})}{Posterior} \propto \frac{P(\mathbf{w}|\theta)}{Likelihood} \frac{P(\theta)}{Prior}$$
$$P(\mathbf{t}|\mathbf{w}) \propto \int_{\Delta} P(\mathbf{w}, \mathbf{t}|\theta) P(\theta) d\theta$$

Introduction

Bayesian inference for PCFGs

Gibbs sampler for (t, θ)

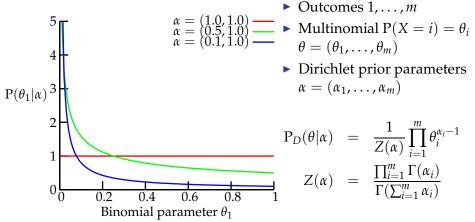
Metropolis-Hastings collapsed sampler for t

Application: Unsupervised morphological analysis of Sesotho verbs

Bayesian priors

- Hypothesis = rule probabilities θ , Data = strings **w**
- Prior can incorporate linguistic insights ("universal grammar")
- Math/computation vastly simplified if prior is conjugate to likelihood
 - posterior belongs to the same model family as prior
- ▶ PCFGs are *products of multinomials*, one for each nonterminal A
 - model has a parameter $\theta_{A \to \beta}$ for each rule $A \to \beta \in R$
- \Rightarrow Conjugate prior is *product of Dirichlets*, one for each nonterminal A
 - ▶ prior has a hyper-parameter $\alpha_{A \to \beta}$ for each rule $A \to \beta \in R$

Dirichlet priors for multinomials



- As α_1 approaches 0, P($\theta_1 | \alpha$) concentrates around 0
- ▶ PCFG prior is product of Dirichlets (one for each $A \in N$)
- Dirichlet for A in PCFG prior has hyper-parameter vector α_A
- Dirichlet prior can prefer *sparse grammars* in which $\theta_r = 0$

Dirichlet priors for PCFGs

- Let R_A be the rules expanding A in R, and θ_A , α_A be the subvectors of θ , α corresponding to R_A
- Conjugacy makes the posterior simple to compute given trees **t**:

$$P_{D}(\theta|\alpha) = \prod_{A \in N} P_{D}(\theta_{A}|\alpha_{A}) \propto \prod_{r \in R} \theta^{\alpha_{r}}$$

$$P(\theta|\mathbf{t}, \alpha) \propto P(\mathbf{t}|\theta) P_{D}(\theta|\alpha)$$

$$\propto \left(\prod_{r \in R} \theta_{r}^{f_{r}(\mathbf{t})}\right) \left(\prod_{r \in R} \theta_{r}^{\alpha_{r}-1}\right)$$

$$= \prod_{r \in R} \theta_{r}^{f_{r}(\mathbf{t})+\alpha_{r}-1}, \text{ so}$$

$$P(\theta|\mathbf{t}, \alpha) = P_{D}(\theta|\mathbf{f}(\mathbf{t}) + \alpha)$$

- ▶ So when trees **t** are observed, posterior is product of Dirichlets
- ▶ But what if trees **t** are hidden, and only strings **w** are observed?

Algorithms for Bayesian inference

Posterior is *computationally intractable*

 $P(\mathbf{t}, \theta | \mathbf{w}) \propto P(\mathbf{w}, \mathbf{t} | \theta) P(\theta)$

Maximum A Posteriori (MAP) estimation finds the posterior mode

$$\theta^{\star} = \operatorname*{argmax}_{\theta} \mathrm{P}(\mathbf{w}|\theta) \mathrm{P}(\theta)$$

Variational Bayes assumes posterior approximately factorizes

$$P(\mathbf{w}, \mathbf{t}, \theta) \approx Q(\mathbf{t})Q(\theta)$$

EM-like iterations using Inside-Outside (Kurihara and Sato 2006)

 Markov Chain Monte Carlo methods construct a Markov chain whose states are samples from P(t, θ|w)

Markov chain Monte Carlo

- MCMC algorithms define a Markov chain where:
 - the states *s* are the objects we wish to sample; e.g., $s = (t, \theta)$
 - the state space is astronomically large
 - transition probabilities P(s'|s) are chosen so that chain converges on desired distribution π(s)
 - many standard recipes for defining P(s'|s) from π(s) (e.g., Gibbs, Metropolis-Hastings)
- "Run" the chain by:
 - pick a start state s₀
 - pick state s_{t+1} by sampling from $P(s'|s_t)$
- To estimate the *expected value* of any function *f* of state *s* (e.g., rule probabilities θ):
 - discard first few "burn-in" samples from chain
 - ► average *f*(*s*) over the remaining samples from chain

Introduction

Bayesian inference for PCFGs

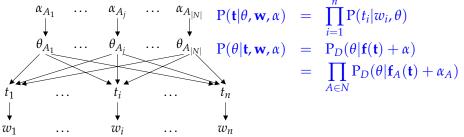
Gibbs sampler for (\mathbf{t}, θ)

Metropolis-Hastings collapsed sampler for t

Application: Unsupervised morphological analysis of Sesotho verbs

A Gibbs sampler for **t** and θ

- Gibbs samplers require states factor into components $s = (t, \theta)$
- Update each component in turn by resampling, conditioned on values for other components
 - Resample trees **t** given strings **w** and rule probabilities θ
 - Resample rule probabilities θ given trees **t** and priors α



- There are standard algorithms for sampling from these distributions
- Trees **t** are *independent given rule probabilities* θ
 - \Rightarrow each t_i can be sampled in parallel
 - \Rightarrow t_i only influences t_j via θ ("mixes slowly", "poor mobility")

Introduction

Bayesian inference for PCFGs

Gibbs sampler for (\mathbf{t}, θ)

Metropolis-Hastings collapsed sampler for \boldsymbol{t}

Application: Unsupervised morphological analysis of Sesotho verbs

Marginalizing out the rule probabilities θ

- ► Define MCMC sampler whose states are the vectors of trees **t**
- Integrate out the rule probabilities θ, collapsing dependencies and coupling trees

$$P(\mathbf{t}|\alpha) = \int_{\Delta} P(\mathbf{t}|\theta) P(\theta|\alpha) d\theta = \prod_{A \in N} \frac{Z(\mathbf{f}_A(\mathbf{t}) + \alpha_A)}{Z(\alpha_A)}$$

• Components of state are the trees *t_i* for strings *w_i*

resample t_i given trees t_{-i} for other strings w_i

$$P(t_i|\mathbf{t}_{-i},\alpha) = \frac{P(\mathbf{t}|\alpha)}{P(\mathbf{t}_{-i}|\alpha)} = \prod_{A \in N} \frac{Z(\mathbf{f}_A(\mathbf{t}) + \alpha_A)}{Z(\mathbf{f}_A(\mathbf{t}_{-i}) + \alpha_A)}$$

- (Sample θ from P($\theta | \mathbf{t}, \alpha$) if required).
- If we could sample from

$$\mathbf{P}(t_i|w_i, \mathbf{t}_{-i}, \alpha) = \frac{\mathbf{P}(w_i|t_i)\mathbf{P}(t_i|\mathbf{t}_{-i}, \alpha)}{\mathbf{P}(w_i|\mathbf{t}_{-i}, \alpha)}$$

we could build a Gibbs sampler whose states are trees t

Why Metropolis-Hastings?

$$P(t_i|\mathbf{t}_{-i}, \alpha) = \prod_{A \in N} \frac{Z(\mathbf{f}_A(\mathbf{t}) + \alpha_A)}{Z(\mathbf{f}_A(\mathbf{t}_{-i}) + \alpha_A)}$$

• What makes $P(t_i | \mathbf{t}_{-i}, \alpha)$ so hard to sample?

- Probability of choosing rule *r* used n_r times before $\propto n_r + \alpha_r$
- Previous occurences of r "prime" the rule r
- *Rule probabilities can change on the fly* inside a sentence
- Breaks dynamic programming sampling algorithms, which require "context-freeness"
- Metropolis-Hastings algorithms don't need samples from $P(t_i | \mathbf{t}_{-i}, \alpha)$
 - ► sample from a user-specified *proposal distribution* Q
 - use acceptance-rejection procedure to convert stream of samples from Q into stream of samples from P(t)

Proposal distribution Q can be any strictly positive distribution

- ▶ more efficient (fewer rejections) if *Q* close to P(**t**)
- our proposal distribution $Q_i(t_i)$ is *PCFG approximation* $E[\theta|\mathbf{t}_{-i}, \alpha]$

Metropolis-Hastings collapsed PCFG sampler

- Sampler state: vector of trees **t**, *t_i* is a parse of *w_i*
- Repeat until convergence:
 - randomly choose index *i* of tree to resample
 - compute PCFG probabilities to be used as proposal distribution

$$\tilde{\theta}_{A \to \beta} = E[\theta_{A \to \beta} | \mathbf{t}_{-i}, \alpha] = \frac{f_{A \to \beta}(\mathbf{t}_{-i}) + \alpha_{A \to \beta}}{\sum_{A \to \beta' \in R_A} f_{A \to \beta'}(\mathbf{t}_{-i}) + \alpha_{A \to \beta'}}$$

- sample a proposal tree t'_i from $P(t_i|w_i, \tilde{\theta})$
- compute acceptance probability $A(t_i, t'_i)$ for t'_i

$$A(t_i, t'_i) = \min\left\{1, \frac{\mathbf{P}(t'_i | \mathbf{t}_{-i}, \alpha) \mathbf{P}(t_i | w_i, \tilde{\theta})}{\mathbf{P}(t_i | \mathbf{t}_{-i}, \alpha) \mathbf{P}(t'_i | w_i, \tilde{\theta})}\right\}$$

(easy to compute since t'_i is fixed)

- choose a random number $x \in U[0, 1]$
 - if $x < A(t_i, t'_i)$ then *accept* t'_i , i.e., replace t_i with t'_i
 - if $x > A(t_i, t'_i)$ then *reject* t'_i , i.e., keep t_i unchanged

Introduction

Bayesian inference for PCFGs

Gibbs sampler for (\mathbf{t}, θ)

Metropolis-Hastings collapsed sampler for t

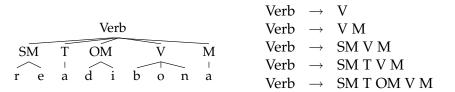
Application: Unsupervised morphological analysis of Sesotho verbs

Sesotho verbal morphology

 Sesotho is a Bantu language with complex morphology, not "messed up" much by phonology

> re a di bon a SM T OM V M "We see them"

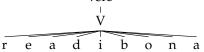
- Demuth's Sesotho corpus contains morphological parses for 2,283 distinct verb types; can we *learn them automatically*?
- Morphological structure reasonably well described by a CFG



We added 81,755 productions expanding each preterminal to each of the 16,350 *contiguous substrings* of any verb in corpus

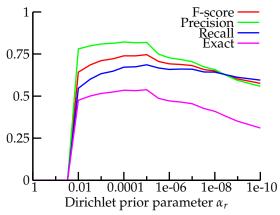
Maximum likelihood finds trivial "saturated" grammar

- Grammar has more productions (81,000) than training strings (2,283)
- Maximum likelihood (e.g., Inside/Outside, EM) tries to make predicted probabilities match empirical probabilities
- "Saturated" grammar: every word type has its own production Verb



- exactly matches empirical probabilities
- this is what Inside-Outside EM finds
- none of these analyses are correct

Bayesian estimates with sparse prior find nontrivial structure



- Dirichlet prior for all rules set to same value *α*
- Dirichlet prior prefers sparse grammars when α ≪ 1
- Non-trivial structure emerges when *α* < 0.01
- Exact word match accuracy ≈ 0.54 at $\alpha = 10^{-5}$

Introduction

- Bayesian inference for PCFGs
- Gibbs sampler for (\mathbf{t}, θ)
- Metropolis-Hastings collapsed sampler for t
- Application: Unsupervised morphological analysis of Sesotho verbs

Conclusion and future work

- Bayesian estimates incorporates prior as well as likelihood
 - product of Dirichlets is conjugate prior for PCFGs
 - can be used to prefer *sparse grammars*
- Even though the full Bayesian posterior is mathematically and computationally intractible, it can be approximated using MCMC
 - Gibbs sampler alternates sampling from $P(\mathbf{t}|\theta)$ and $P(\theta|\mathbf{t})$
 - Metropolis-Hastings collapsed sampler integrates out θ and samples P(t_i|t_{-i})
 - C++ implementations available on my Brown web site
- Need to compare these methods with Variational Bayes
- MCMC methods are usually more flexible than other approaches
 - should generalize well to more complex models

Bayesian MAP EM

• EM re-estimation of θ uses ML estimate in M-step

$$\theta_r^{(t+1)} \propto \mathrm{E}[f_r|\mathbf{w}, \theta^{(t)}]$$

• Use Bayesian MAP estimate for θ instead of ML estimate

$$\theta_r^{(t+1)} \propto \max(0, \mathbb{E}[f_r | \mathbf{w}, \theta^{(t)}] + \alpha_r - 1)$$

• If
$$E[f_r | \mathbf{w}, \theta^{(t)}] \approx 0$$
 and $\alpha_r \ll 1$ then
• $\theta_r^{(t+1)} = 0$

- if θ_r = 0 for sufficiently many rules *r*, then some input strings may fail to parse
- this occurs in Sesotho example when *α_r* is small enough to find non-trivial structure
- Variational Bayes is the right way to do this!

Variational Bayes for PCFGs

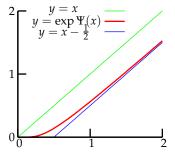
Variational Bayes seeks a factorized representation Q

 $Q(\mathbf{t})Q(\theta) \approx P(\mathbf{w}, \mathbf{t}, \theta | \alpha)$

that maximizes a lower bound on the log likelihood w.r.t. Q

 With Dirichlet prior, yields EM-like updates for variational parameters θ

$$\tilde{\theta}_{A \to \beta}^{(t+1)} = \frac{\exp \Psi(E[f_{A \to \beta} | \mathbf{w}, \tilde{\theta}^{(t)}] + \alpha_{A \to \beta})}{\exp \Psi(\sum_{A \to \beta' \in R_A} E[f_{A \to \beta'} | \mathbf{w}, \tilde{\theta}^{(t)}] + \alpha_{A \to \beta'})}$$



- Ψ is the *digamma function*
- exp Ψ(x) > 0 for all x > 0, so Bayesian MAP estimator problem never arises with Variational Bayes