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Goal and motivation

I Develop algorithms for Bayesian inference for Probabilistic
Context-Free Grammars (PCFGs)

I Bayesian inference combines likelihood with prior information
I bias learner toward sparse grammars

I The techniques presented here generalize to other generative
models with branching structure

I more complex parsing models (e.g., “Adaptor Grammars”, a
non-parametric extension of PCFGs)

I Hidden Markov Models (a sampler that resamples all labels at
once, cf. Neal 2006)
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Probabilistic context-free grammars
I The probability of a tree t is the product of probabilities of rules used

to construct it

P(t|θ) = ∏
r∈R

θ
fr(t)
r

where fr(t) is the number of times rule r appears in tree t.
I The probability of a string w is the sum of probabilities of all trees with

w as their yield

P(w|θ) = ∑
t:y(t)=w

P(t|θ)

R =







S→NP VP
NP→Al,
NP→George
VP→barks
VP→snores







,

θS→NP VP = 1.0
θNP→Al = 0.5
θNP→George = 0.5
θVP→barks = 0.2
θVP→snores = 0.8

, P







S

Al

NP

barks

VP







=0.1
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Unsupervised inference for PCFGs
I Given rules R and corpus of strings w, infer:

I rule probabilities θ
I trees t for w

I Maximum likelihood, e.g. Inside-Outside/EM (a point estimate)

θ̂ = argmax
θ

P(w|θ) (EM)

t̂ = argmax
t

P(t|w, θ̂) (Viterbi)

I Bayesian inference incorporates prior P(θ) and infers a posterior
distribution

P(θ|w)
︸ ︷︷ ︸

Posterior

∝ P(w|θ)
︸ ︷︷ ︸

Likelihood

P(θ)
︸︷︷︸

Prior

P(t|w) ∝

∫

∆
P(w, t|θ) P(θ) dθ
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Bayesian priors

P(Hypothesis|Data)
︸ ︷︷ ︸

Posterior

∝ P(Data|Hypothesis)
︸ ︷︷ ︸

Likelihood

P(Hypothesis)
︸ ︷︷ ︸

Prior

I Hypothesis = rule probabilities θ, Data = strings w
I Prior can incorporate linguistic insights (“universal grammar”)
I Math/computation vastly simplified if prior is conjugate to likelihood

I posterior belongs to the same model family as prior
I PCFGs are products of multinomials, one for each nonterminal A

I model has a parameter θA→β for each rule A → β ∈ R
⇒ Conjugate prior is product of Dirichlets, one for each nonterminal A

I prior has a hyper-parameter αA→β for each rule A → β ∈ R
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Dirichlet priors for multinomials

α = (0.1, 1.0)
α = (0.5, 1.0)
α = (1.0, 1.0)

Binomial parameter θ1

P(θ1|α)

10.80.60.40.20

5

4

3

2

1

0

I Outcomes 1, . . . , m
I Multinomial P(X = i) = θi

θ = (θ1, . . . , θm)

I Dirichlet prior parameters
α = (α1, . . . , αm)

PD(θ|α) =
1

Z(α)

m
∏
i=1

θαi−1
i

Z(α) =
∏

m
i=1 Γ(αi)

Γ(∑
m
i=1 αi)

I As α1 approaches 0, P(θ1|α) concentrates around 0
I PCFG prior is product of Dirichlets (one for each A ∈ N)
I Dirichlet for A in PCFG prior has hyper-parameter vector αA
I Dirichlet prior can prefer sparse grammars in which θr = 0
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Dirichlet priors for PCFGs

I Let RA be the rules expanding A in R, and θA, αA be the subvectors of
θ, α corresponding to RA

I Conjugacy makes the posterior simple to compute given trees t:

PD(θ|α) = ∏
A∈N

PD(θA|αA) ∝ ∏
r∈R

θαr

P(θ|t, α) ∝ P(t|θ)PD(θ|α)

∝

(

∏
r∈R

θ
fr(t)
r

) (

∏
r∈R

θαr−1
r

)

= ∏
r∈R

θ
fr(t)+αr−1
r , so

P(θ|t, α) = PD(θ|f(t) + α)

I So when trees t are observed, posterior is product of Dirichlets
I But what if trees t are hidden, and only strings w are observed?
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Algorithms for Bayesian inference

I Posterior is computationally intractable

P(t, θ|w) ∝ P(w, t|θ) P(θ)

I Maximum A Posteriori (MAP) estimation finds the posterior mode

θ? = argmax
θ

P(w|θ) P(θ)

I Variational Bayes assumes posterior approximately factorizes

P(w, t, θ) ≈ Q(t)Q(θ)

EM-like iterations using Inside-Outside (Kurihara and Sato 2006)
I Markov Chain Monte Carlo methods construct a Markov chain

whose states are samples from P(t, θ|w)
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Markov chain Monte Carlo

I MCMC algorithms define a Markov chain where:
I the states s are the objects we wish to sample; e.g., s = (t, θ)

I the state space is astronomically large
I transition probabilities P(s′|s) are chosen so that chain

converges on desired distribution π(s)
I many standard recipes for defining P(s′|s) from π(s)

(e.g., Gibbs, Metropolis-Hastings)
I “Run” the chain by:

I pick a start state s0
I pick state st+1 by sampling from P(s′|st)

I To estimate the expected value of any function f of state s
(e.g., rule probabilities θ):

I discard first few “burn-in” samples from chain
I average f (s) over the remaining samples from chain
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A Gibbs sampler for t and θ

I Gibbs samplers require states factor into components s = (t, θ)
I Update each component in turn by resampling, conditioned on

values for other components
I Resample trees t given strings w and rule probabilities θ
I Resample rule probabilities θ given trees t and priors α

tit1 tn

w1 wi wn

θAj. . .θA1 . . . θA|N|

αA1 . . .. . . αAj αA|N|

. . .

. . .. . .

. . .

P(t|θ, w, α) =
n

∏
i=1

P(ti|wi, θ)

P(θ|t, w, α) = PD(θ|f(t) + α)

= ∏
A∈N

PD(θ|fA(t) + αA)

I There are standard algorithms for sampling from these distributions
I Trees t are independent given rule probabilities θ

⇒ each ti can be sampled in parallel
⇒ ti only influences tj via θ (“mixes slowly”, “poor mobility”)
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Marginalizing out the rule probabilities θ

I Define MCMC sampler whose states are the vectors of trees t
I Integrate out the rule probabilities θ, collapsing dependencies and

coupling trees

P(t|α) =
∫

∆
P(t|θ) P(θ|α) dθ = ∏

A∈N

Z(fA(t) + αA)

Z(αA)

I Components of state are the trees ti for strings wi
I resample ti given trees t−i for other strings wi

P(ti|t−i, α) =
P(t|α)

P(t−i|α)
= ∏

A∈N

Z(fA(t) + αA)

Z(fA(t−i) + αA)

I (Sample θ from P(θ|t, α) if required).
I If we could sample from

P(ti|wi, t−i, α) =
P(wi|ti)P(ti|t−i, α)

P(wi|t−i, α)

we could build a Gibbs sampler whose states are trees t
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Why Metropolis-Hastings?

P(ti|t−i, α) = ∏
A∈N

Z(fA(t) + αA)

Z(fA(t−i) + αA)

I What makes P(ti|t−i, α) so hard to sample?
I Probability of choosing rule r used nr times before ∝ nr + αr
I Previous occurences of r “prime” the rule r
I Rule probabilities can change on the fly inside a sentence
I Breaks dynamic programming sampling algorithms, which

require “context-freeness”
I Metropolis-Hastings algorithms don’t need samples from P(ti|t−i, α)

I sample from a user-specified proposal distribution Q
I use acceptance-rejection procedure to convert stream of samples

from Q into stream of samples from P(t)
I Proposal distribution Q can be any strictly positive distribution

I more efficient (fewer rejections) if Q close to P(t)
I our proposal distribution Qi(ti) is PCFG approximation E[θ|t−i, α]
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Metropolis-Hastings collapsed PCFG sampler
I Sampler state: vector of trees t, ti is a parse of wi
I Repeat until convergence:

I randomly choose index i of tree to resample
I compute PCFG probabilities to be used as proposal distribution

θ̃A→β = E[θA→β|t−i, α] =
fA→β(t−i) + αA→β

∑A→β′∈RA fA→β′(t−i) + αA→β′

I sample a proposal tree t′i from P(ti|wi, θ̃)
I compute acceptance probability A(ti, t′i) for t′i

A(ti, t′i) = min
{

1, P(t′i |t−i, α)P(ti|wi, θ̃)

P(ti|t−i, α)P(t′i |wi, θ̃)

}

(easy to compute since t′i is fixed)
I choose a random number x ∈ U[0, 1]

I if x < A(ti, t′i) then accept t′i , i.e., replace ti with t′i
I if x > A(ti, t′i) then reject t′i , i.e., keep ti unchanged
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Sesotho verbal morphology
I Sesotho is a Bantu language with complex morphology, not “messed

up” much by phonology
re
SM

a
T

di
OM

bon
V

a
M

“We see them”
I Demuth’s Sesotho corpus contains morphological parses for 2,283

distinct verb types; can we learn them automatically?
I Morphological structure reasonably well described by a CFG

Verb

SM

r e

T

a d i

OM

b o n

V

a

M

Verb → V
Verb → V M
Verb → SM V M
Verb → SM T V M
Verb → SM T OM V M

I We added 81,755 productions expanding each preterminal to each of
the 16,350 contiguous substrings of any verb in corpus

19 / 23



Maximum likelihood finds trivial “saturated”
grammar

I Grammar has more productions (81,000) than training strings (2,283)
I Maximum likelihood (e.g., Inside/Outside, EM) tries to make

predicted probabilities match empirical probabilities
I “Saturated” grammar: every word type has its own production

V

r e a d i b o n a

Verb

I exactly matches empirical probabilities
I this is what Inside-Outside EM finds
I none of these analyses are correct
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Bayesian estimates with sparse prior find nontrivial
structure

Exact
Recall

Precision
F-score

Dirichlet prior parameter αr
1 0.01 0.0001 1e-06 1e-08 1e-10

1

0.75

0.5

0.25

0

I Dirichlet prior for all rules
set to same value α

I Dirichlet prior prefers
sparse grammars when
α � 1

I Non-trivial structure
emerges when α < 0.01

I Exact word match accuracy
≈ 0.54 at α = 10−5
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Conclusion and future work

I Bayesian estimates incorporates prior as well as likelihood
I product of Dirichlets is conjugate prior for PCFGs
I can be used to prefer sparse grammars

I Even though the full Bayesian posterior is mathematically and
computationally intractible, it can be approximated using MCMC

I Gibbs sampler alternates sampling from P(t|θ) and P(θ|t)
I Metropolis-Hastings collapsed sampler integrates out θ and

samples P(ti|t−i)
I C++ implementations available on my Brown web site

I Need to compare these methods with Variational Bayes
I MCMC methods are usually more flexible than other approaches

I should generalize well to more complex models
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Bayesian MAP EM

I EM re-estimation of θ uses ML estimate in M-step

θ
(t+1)
r ∝ E[fr|w, θ(t)]

I Use Bayesian MAP estimate for θ instead of ML estimate

θ
(t+1)
r ∝ max(0, E[fr|w, θ(t)]+αr − 1)

I If E[fr|w, θ(t)] ≈ 0 and αr � 1 then
I θ

(t+1)
r = 0

I if θr = 0 for sufficiently many rules r, then some input strings
may fail to parse

I this occurs in Sesotho example when αr is small enough to find
non-trivial structure

I Variational Bayes is the right way to do this!
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Variational Bayes for PCFGs
I Variational Bayes seeks a factorized representation Q

Q(t)Q(θ) ≈ P(w, t, θ|α)

that maximizes a lower bound on the log likelihood w.r.t. Q
I With Dirichlet prior, yields EM-like updates for variational

parameters θ̃

θ̃
(t+1)
A→β =

exp Ψ( E[fA→β|w, θ̃(t)] + αA→β )

exp Ψ( ∑A→β′∈RA E[fA→β′ |w, θ̃(t)] + αA→β′ )

y = x − 1
2

y = exp Ψ(x)
y = x

210

2

1

0

I Ψ is the digamma function
I exp Ψ(x) > 0 for all x > 0, so Bayesian

MAP estimator problem never arises with
Variational Bayes
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