
An introduction to grammars and
parsing

Mark Johnson

May, 2005

1

Talk outline

• What is computational linguistics?

• Probabilistic grammars

• Identifying phrase structure (parsing)

• Learning phrase structure

• More realistic grammars

2

What is computational linguistics?

Computational linguistics studies the computational processes involved in

language production, comprehension and acquisition.

• assumption that language is inherently computational

• scientific side:

– modeling human performance (computational psycholinguistics)

– understanding how it can be done at all

• technological applications:

– speech recognition

– information extraction (who did what to whom) and question

answering

– machine translation (translation by computer)

3

(Some of the) problems in modeling language

+ Language is a product of the human mind

⇒ any structure we observe is a product of the mind

− Language involves a transduction between form and meaning, but we

don’t know much about the way meanings are represented

+/− We have (reasonable?) guesses about some of the computational

processes involved in language

− We don’t know very much about the cognitive processes that language

interacts with

− We know little about the anatomical layout of language in the brain

− We know little about neural networks that might support linguistic

computations

4

Aspects of linguistic structure

• Phonetics: the (production and perception) of speech sounds

• Phonology: the organization and regularities of speech sounds

• Morphology: the structure and organization of words

• Syntax: the way words combine to form phrases and sentences

• Semantics: the way meaning is associated with sentences

• Pragmatics: how language can be used to do things

In general the further we get from speech, the less well we understand

what’s going on!

5

Aspects of syntactic and semantic structure

S

NP

DT

Most

NN

people

VP

VB

hate

NP

JJ

baked

NN

beans

S

CONJ

But

S

NP

DT

the

NNS

students

VP

VB

promised

S

NP

PRO

VP

TO

to

VP

VB

eat

NP

it
• Anaphora: it refers to baked beans

• Predicate-argument structure: the students is agent of eat

• Discourse structure: second clause is contrasted with first

These all refer to phrase structure entities! Parsing is the process of

recovering these entities.

6

Talk outline

• What is computational linguistics?

• Probabilistic grammars

• Identifying phrase structure (parsing)

• Learning phrase structure

• More realistic grammars

7

Context free grammars

A context-free grammar G = (V,S, s,R) consists of:

• V, a finite set of terminals (V0 = {Sam, Sasha, thinks, snores})

• S, a finite set of non-terminals disjoint from V (S0 = {S,NP,VP,V})

• R, a finite set of productions of the form A→ X1 . . .Xn, where A ∈ S

and each Xi ∈ S ∪ V

• s ∈ S is called the start symbol (s0 = S)

G generates a tree ψ iff

• The label of ψ’s root node is s

• For all local trees with parent A

and children X1 . . .Xn in ψ

A→ X1 . . . Xn ∈ R

G generates a string w ∈ V? iff w is

the terminal yield of a tree generated

by G

NP VP

S

Sam V S

NP VP

Sasha V

snores

thinks

Productions

S→ NP VP

NP→ Sam

V→ thinks

V→ snores

VP→ V S

VP→ V

NP→ Sasha

8

CFGs as “plugging” systems

Sam+ hates+ George+

V+ NP+

V− NP−

VP−NP−

NP+ VP+

Sam− hates− George−

S+

Sam hates George

V NP

VPNP

S

“Pluggings” Resulting tree

S→ NP VP

VP→ V NP

NP→ Sam

NP→ George

V→ hates

V→ likes

Productions

S−

• Goal: no unconnected “sockets” or “plugs”

• The productions specify available types of components

• In a probabilistic CFG each type of component has a “price”

9

Structural Ambiguity

R1 = {VP → V NP,VP → VP PP,NP → D N,N → N PP, . . .}

N

man

V

saw

NP

I

NP

I

V

saw

VP

NP

N

the man

PP

NP

N

the telescope

P

with

VP

S

D

N

NP

VP

S

the

D

PP

NP

N

the telescope

P

with D

D

• CFGs can capture structural ambiguity in language.

• Ambiguity generally grows exponentially in the length of the string.

– The number of ways of parenthesizing a string of length n is

Catalan(n)

• Broad-coverage statistical grammars are astronomically ambiguous.
10

Derivations

A CFG G = (V,S, s,R) induces a rewriting relation ⇒G, where

γAδ ⇒G γβδ iff A→ β ∈ R and γ, δ ∈ (S ∪ V)?.

A derivation of a string w ∈ V? is a finite sequence of rewritings

s⇒G . . .⇒G w. ⇒?
G is the reflexive and transitive closure of ⇒G.

The language generated by G is {w : s⇒? w,w ∈ V?}.

G0 = (V0,S0, S,R0), V0 = {Sam, Sasha, likes, hates}, S0 = {S,NP,VP,V},

R0 = {S → NP VP,VP → V NP,NP → Sam,NP → Sasha,V → likes,V → hates}

S

⇒ NP VP

⇒ NP V NP

⇒ Sam V NP

⇒ Sam V Sasha

⇒ Sam likes Sasha

Steps in a terminating

derivation are always cuts in

a parse tree

Left-most and right-most

derivations are unique

S

NP VP

V NPSam

likes Sasha

11

Probabilistic Context Free Grammars

A Probabilistic Context Free Grammar (PCFG) G consists of

• a CFG (V,S, S,R) with no useless productions, and

• production probabilities p(A→ β) = P(β|A) for each A→ β ∈ R,

the conditional probability of an A expanding to β

A production A→ β is useless iff it is not used in any terminating

derivation, i.e., there are no derivations of the form

S ⇒? γAδ ⇒ γβδ ⇒∗ w for any γ, δ ∈ (V ∪ S)? and w ∈ V?.

If r1 . . . rn is a sequence of productions used to generate a tree ψ, then

PG(ψ) = p(r1) . . . p(rn)

=
∏

r∈R

p(r)fr(ψ)

where fr(ψ) is the number of times r is used in deriving ψ
∑

ψ PG(ψ) = 1 if p satisfies suitable constraints

12

Example PCFG

1.0 S → NP VP 1.0 VP → V

0.75 NP → George 0.25 NP → Al

0.6 V → barks 0.4 V → snores

P

S

NP VP

George V

barks

= 0.45 P

S

NP VP

Al V

snores

= 0.1

13

Talk outline

• What is computational linguistics?

• Probabilistic grammars

• Identifying phrase structure (parsing)

• Learning phrase structure

• More realistic grammars

14

Computing the probability of a tree

1.0 S → NP VP 1.0 VP → V

0.75 NP → George 0.25 NP → Al

0.6 V → barks 0.4 V → snores

P

S

NP VP

George V

barks

= 0.45 P

S

NP VP

Al V

snores

= 0.1

15

Things we want to compute

1. What is the probability PG(w) of the string w? (language modeling)

PG(w) = PG(s⇒∗ w) =
∑

ψ∈ΨG(w)

PG(ψ)

2. What is the most probable parse ψ̂(w) of a string w? (parsing)

ψ̂(w) = argmax
ψ∈ΨG(w)

PG(ψ)

where:

ΨG(w) is the set of parse trees for w generated by G, and

PG(ψ) is the probability of tree ψ wrt grammar G.

Naive algorithm:

1. Compute set of parse trees ΨG(w) for w

2. Take max/sum as appropriate

16

String positions

String positions are a systematic way of representing substrings in a string.

A string position of a string w = x0 . . . xn−1 is an integer 0 ≤ i ≤ n.

A substring of w is represented by a pair (i, j) of string positions, where

0 ≤ i ≤ j ≤ n.

wi,j represents the substring wi . . . wj−1

likes mangoes

0 1 2 3

Howard

w1 w2w0

Example:

w0,1 = Howard, w1,3 = likes mangoes, w0,0 = w1,1 = w2,2 = w3,3 = ε

• Nothing depends on string positions being numbers, so

• this all generalizes to speech recognizer lattices, which are graphs where

vertices correspond to word boundaries

the how us

house

a rose

arose

17

PCFG “Inside” algorithm

The inside algorithm for computing the probability of a string is a

generalization of the backward algorithm.

Assume G = (V,S, s,R, p) is in Chomsky Normal Form, i.e., all

productions are of the form A→ B C or A→ x, where A,B,C ∈ S, x ∈ V.

Goal: To compute P(w) =
∑

ψ∈ΨG(w)

P(ψ) = P(s⇒? w)

Data structure: A table P(A⇒? wi,j) for A ∈ S and 0 ≤ i < j ≤ n

Base case: P(A⇒? wi,i+1) = p(A→ wi) for i = 0, . . . , n− 1

Recursion: P(A⇒? wi,k)

=
k−1
∑

j=i+1

∑

A→BC∈R(A)

p(A→ BC)P(B ⇒? wi,j)P(C ⇒? wj,k)

Return: P(s⇒? w0,n)

18

Dynamic programming recursion

PG(A⇒? wi,k) =
k−1
∑

j=i+1

∑

A→BC∈R(A)

p(A→ BC)PG(B ⇒? wi,j)PG(C ⇒? wj,k)

B C

A

wi,j wj,k

S

PG(A⇒? wi,k) is called an “inside probability”.

19

Example PCFG parse

1.0 S → NP VP 1.0 VP → V NP

0.7 NP → George 0.3 NP → John

0.5 V → likes 0.5 V → hates

George hates John

NP 0.7 V 0.5 NP 0.3

S 0.15

1 2 30

VP 0.15

0 NP 0.7

2

1

S 0.15

VP 0.15

1 2 3

V 0.5

NP 0.3

L
ef

t
st

ri
n
g

p
os

it
io

n

Right string position

20

Talk outline

• What is computational linguistics?

• Probabilistic grammars

• Identifying phrase structure (parsing)

• Learning phrase structure

• More realistic grammars

21

Two approaches to computational linguistics

“Rationalist”: Linguist formulates generalizations and expresses them in

a grammar

“Empiricist”: Collect a corpus of examples, linguists annotate them with

relevant information, a machine learning algorithm extracts

generalizations

• I don’t think there’s a deep philosophical difference here, but many

people do

• Continuous models do much better than categorical models

(statistical inference uses more information than categorical inference)

• Humans are lousy at estimating numerical probabilities, but luckily

parameter estimation is the one kind of machine learning that (sort of)

works

22

Treebanks, prop-banks and discourse banks

• A treebank is a corpus of phrase structure trees

– The Penn treebank consists of about a million words from the Wall

Street Journal, or about 40,000 trees.

– The Switchboard corpus consists of about a million words of

treebanked spontaneous conversations, linked up with the acoustic

signal.

– Treebanks are being constructed for other languages also

• The Penn treebank is being annotated with predicate argument

structure (PropBank) and discourse relations.

23

Estimating PCFGs from visible data

S

NP VP

rice grows

S

NP VP

rice grows

S

NP VP

corn grows

Rule Count Rel Freq

S → NP VP 3 1

NP → rice 2 2/3

NP → corn 1 1/3

VP → grows 3 1

P

S

NP VP

rice grows

= 2/3

P

S

NP VP

corn grows

= 1/3

(The relative frequency estimator is also the MLE for PFSA, of course).

24

Properties of MLE

The relative frequency estimator is the MLE for PCFGS, so it has the

following properties:

• Consistency: As the sample size grows, the estimates of the parameters

converge on the true parameters

• Asymptotic optimality: For large samples, there is no other consistent

estimator whose estimates have lower variance

• Sparse data is the big problem with the MLE.

– Rules that do not occur in the training data get zero probability

• Aside from this, MLEs for statistical grammars work well in practice.

– The Penn Treebank has ≈ 1.2 million words of Wall Street Journal

text annotated with syntactic trees

– The PCFG estimated from the Penn Treebank has ≈ 15,000 rules

25

Unsupervised training and EM

Expectation Maximization (EM) is a general technique for approximating

the MLE when estimating parameters p from the visible data x is difficult,

but estimating p from augmented data z = (x, y) is easier (y is the hidden

data).

The EM algorithm given visible data x:

1. guess initial value p0 of parameters (e.g., rule probabilities)

2. repeat for i = 0, 1, . . . until convergence:

Expectation step: For all y1, . . . , yn ∈ Y, generate pseudo-data

(x, y1), . . . , (x, yn), where (x, y) has “frequency” Ppi
(y|x)

Maximization step: Set pi+1 to the MLE from the pseudo-data

The EM algorithm finds the MLE p̂(x) = Lx(p) of the visible data x.

Sometimes it is not necessary to explicitly generate the pseudo-data (x, y);

often it is possible to perform the maximization step directly from

sufficient statistics (for PCFGs, the expected production frequencies)
26

Dynamic programming for EG[nA→BC |w]

EG[nA→BC |w] =
∑

0≤i<j<k≤n

EG[Ai,k → Bi,jCj,k|w]

The expected fraction of parses of w in which Ai,k rewrites as Bi,jCj,k is:

EG[Ai,k → Bi,jCj,k|w]

=
P(S ⇒? w1,iAwk,n)p(A→ BC)P(B ⇒? wi,j)P(C ⇒? wj,k)

PG(w)

B C

A

wi,j wj,k

S

w0,i wk,n27

Calculating PG(S ⇒? w0,i Awk,n)

Known as “outside probabilities” (but if G contains unary productions,

they can be greater than 1).

Recursion from larger to smaller substrings in w.

Base case: P(S ⇒? w0,0 S wn,n) = 1

Recursion: P(S ⇒? w0,j C wk,n) =
j−1
∑

i=0

∑

A,B∈S

A→BC∈R

P(S ⇒? w0,iAwk,n)p(A→ BC)P(B ⇒? wi,j)

+
n

∑

l=k+1

∑

A,D∈S

A→CD∈R

P(S ⇒? w0,j Awl,n)p(A→ C D)P(D ⇒? wk,l)

28

Recursion in PG(S ⇒? w0,i Awk,n)

P(S ⇒? w0,j C wk,n) =
j−1
∑

i=0

∑

A,B∈S

A→BC∈R

P(S ⇒? w0,iAwk,n)p(A→ BC)P(B ⇒? wi,j)

+
n

∑

l=k+1

∑

A,D∈S

A→CD∈R

P(S ⇒? w0,j Awl,n)p(A→ C D)P(D ⇒? wk,l)

B C

A

wi,j wj,k

S

w0,i wk,n

C D

A

wj,k wk,l

S

w0,j wl,n

29

The EM algorithm for PCFGs

Infer hidden structure by maximizing likelihood of visible data:

1. guess initial rule probabilities

2. repeat until convergence

(a) parse a sample of sentences

(b) weight each parse by its conditional probability

(c) count rules used in each weighted parse, and estimate rule

frequencies from these counts as before

EM optimizes the marginal likelihood of the strings D = (w1, . . . , wn)

Each iteration is guaranteed not to decrease the likelihood of D, but EM

can get trapped in local minima.

The Inside-Outside algorithm can produce the expected counts without

enumerating all parses of D.

When used with PFSA, the Inside-Outside algorithm is called the

Forward-Backward algorithm (Inside=Backward, Outside=Forward)

30

Example: The EM algorithm with a toy PCFG

Initial rule probs
rule prob

· · · · · ·

VP → V 0.2

VP → V NP 0.2

VP → NP V 0.2

VP → V NP NP 0.2

VP → NP NP V 0.2

· · · · · ·

Det → the 0.1

N → the 0.1

V → the 0.1

“English” input

the dog bites

the dog bites a man

a man gives the dog a bone

· · ·

“pseudo-Japanese” input

the dog bites

the dog a man bites

a man the dog a bone gives

· · ·

31

Probability of “English”

Iteration

Average
sentence

probability

543210

1

0.1

0.01

0.001

0.0001

1e-05

1e-06

32

Rule probabilities from “English”

V → the
N → the

Det → the
VP → NP NP V
VP → V NP NP

VP → NP V
VP → V NP

Iteration

Rule
probability

543210

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

33

Probability of “Japanese”

Iteration

Average
sentence

probability

543210

1

0.1

0.01

0.001

0.0001

1e-05

1e-06

34

Rule probabilities from “Japanese”

V → the
N → the

Det → the
VP → NP NP V
VP → V NP NP

VP → NP V
VP → V NP

Iteration

Rule
probability

543210

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

35

Learning in statistical paradigm

• The likelihood is a differentiable function of rule probabilities

⇒ learning can involve small, incremental updates

• Learning new structure (rules) is hard, but . . .

• Parameter estimation can approximate rule learning

– start with “superset” grammar

– estimate rule probabilities

– discard low probability rules

36

Applying EM to real data

• ATIS treebank consists of 1,300 hand-constructed parse trees

• ignore the words (in this experiment)

• about 1,000 PCFG rules are needed to build these trees

S

VP

VB

Show

NP

PRP

me

NP

NP

PDT

all

DT

the

JJ

nonstop

NNS

flights

PP

PP

IN

from

NP

NNP

Dallas

PP

TO

to

NP

NNP

Denver

ADJP

JJ

early

PP

IN

in

NP

DT

the

NN

morning

.

.

37

Experiments with EM

1. Extract productions from trees and estimate probabilities probabilities

from trees to produce PCFG.

2. Initialize EM with the treebank grammar and MLE probabilities

3. Apply EM (to strings alone) to re-estimate production probabilities.

4. At each iteration:

• Measure the likelihood of the training data and the quality of the

parses produced by each grammar.

• Test on training data (so poor performance is not due to

overlearning).

38

Likelihood of training strings

Iteration

− log PG(~w)

20151050

16000

15500

15000

14500

14000

39

Quality of ML parses

Recall
Precision

Iteration

Parse
Accuracy

20151050

1

0.95

0.9

0.85

0.8

0.75

0.7

40

Why does EM do so poorly?

• EM assigns trees to strings to maximize the marginal probability of the

strings, but the trees weren’t designed with that in mind

• We have an “intended interpretation” of categories like NP, VP, etc.,

which EM has no way of knowing

• Our grammar models are defective; real languages aren’t context-free

• How can information about P(w) provide information about P(ψ|w)?

• . . . but no one really knows.

41

Talk outline

• What is computational linguistics?

• Probabilistic grammars

• Identifying phrase structure (parsing)

• Learning phrase structure

• More realistic grammars

42

Subcategorization

Grammars that merely relate categories miss a lot of important linguistic

relationships.

R3 = {VP → V,VP → V NP,V → sleeps,V → likes, . . .}

S

NP VP

Al V

sleeps
*likes

S

NP VP

Al V NP

N

mangoes

likes
*sleeps

Verbs and other heads of phrases subcategorize for the number and kind of

complement phrases they can appear with.

43

CFG account of subcategorization

General idea: Split the preterminal states to encode subcategorization.

[]

S

NP

Al

VP

V

sleeps

likes

[NP]

NP

Al V

pizzas

N

NP

VP

S

R4 = {VP → V
[] ,VP → V

[NP] NP, V
[] → sleeps, V

[NP] → likes, . . .}

The “split preterminal states” restrict which contexts verbs can appear in.

Sparse data becomes a big problem; addressed with regularization and

smoothing.

44

Selectional preferences

Head-to-head dependencies are an approximation to real-world knowledge.

S

NP VP

Al V NP

N

pizzas

eats

#books

S

NP VP

Al V NP

N

#pizzas
books

reads

But note that selectional preferences involve more than head-to-head

dependencies

Al drives a (#toy model) car

45

Head to head dependencies and bilexical rules

Sam read bookaSasha

DT NN

NPNPVB

VPNP

S

Head=a Head=book

Head=bookHead=Sasha

Head=readHead=Sam

Head=read

Head=read

VP
Head=read

−→ VB
Head=read

NP
Head=Sasha

NP
Head=book

The number of possible rules grows rapidly; with a ≈ 104 word vocabulary

one might expect over 108 possible bilexical rules.

Sparse data is the big problem with grammars like this.

46

Nonlocal “movement” dependencies

S

NP VP

Aux VP

V NP

Al

eat

will

pizza

D N

the

C’/NP

Aux S/NP

NP VP/NP

Aux VP/NP

V NP/NP

will

Al

eat

NP

pizza

D N

which

CP

Subcategorization and selectional preferences are preserved under

movement.

Movement can be encoded using recursive nonterminals (unification

grammars).

47

Nonterminal labels as communication channels

The nonterminal label is the communication channel between two parts of

the tree.

Learn or design the structure of non-terminals so they pass the appropriate

information around the tree.

will

eat

Al

which pizza

Selectional dependency
Verb movement dependency
WH movement dependency

Modern statistical parsers pass around 7 different features through the tree,

and condition productions on them.

Sparse data and therefore smoothing are major issues!
48

Summary and Conclusion

• Computational linguistics is great fun!

• . . . and maybe will help us understand deep things about language and

the mind

• Language involves rich compositional structure

• . . . and grammars are a way of describing that structure

• Probabilistic grammars give us a systematic way of distinguishing more

likely structures from less likely structures

• The number of parses (structures) can grow exponentially with

sentence length

• . . . but there are polynomial-time dynamic programming algorithms for

most of the important problems

• Sparse data is a big problem for learning realistic grammars

49

Talk outline

• What is computational linguistics?

• Probabilistic grammars

• Identifying phrase structure (parsing)

• Learning phrase structure

• More realistic grammars

50

Applications of neural networks in CL

• The big problem: how can NNs represent compositional structure?

• NNs are sometimes used as components in larger models (e.g.,

predicting a node’s label given the labels of its children)

– other machine learning techniques often work better, and are

computationally more efficient

• Applying recurrent NN models of structure in time has generally not

been successful (“a dog walking on its hind legs”)

– Recurrent NNs seem to be equivalent to (factored) finite state

machines

⇒ incapable of capturing two-dimensional nature of phrase

structure

51

“Brute force” NN simulation of CKY parsing

PG(A⇒? wi,k) =
k−1
∑

j=i+1

∑

A→BC∈R(A)

p(A→ BC)PG(B ⇒? wi,j)PG(C ⇒? wj,k)

B C

A

wi,j wj,k

S

Bi,jCj,k

Bi,j Cj,k

Ai,k

• Introduce a node for each Ai,k and for each (Bi,j , Cj,k)

• (Bi,j , Cj,k) computes p(A→ BC)PG(B ⇒? wi,j)PG(C ⇒? wj,k)

• Ai,k sums over all A→ BC and (Bi,j, Cj,k)

• Asynchronous (non-real-time) model with unnatural parameter tying
52

Incremental parsing algorithms

• Parsing involves incrementally constructing the parse tree

• We require that words are incorporated in left-to-right order

• Because of the two-dimensional nature of phrase structure trees, there

are many ways of parsing incrementally

Top-down: Posit parent before any children

Bottom-up: Posit parent after all children

Left-corner: Posit parent after first child

• Every incremental parsing algorithm corresponds to different sets of

cuts through edges in the phrase structure tree

• Only the edges on such cuts are active; the rest of the tree can be

ignored (as far as parsing goes)

53

Top-down parsing

S

VP

NNS

students know

VB

NP

DT

the

NNS

professors snore

VP

VB

S

NP

DT

the

S

VP

know

NP

DT

the

NNS

professors snore

VP

VB S

VB

NP

DT NNS

the students

S

NNS

professors snore

VP

VB

NP

DT

the

NNS

students

VP

VB

know

S

NP

DT

the

. . .
. . .

Top-down parsing is the only parsing algorithm that always maintains a

connected partial parse tree

54

Bottom-up parsing

NP VP

NNS

students know

VB

NP

DT

the

NNS

professors snore

VP

VB

S

S

DT

the

VP

know

NP

DT

the

NNS

professors snore

VP

VB S

VB

NP

DT NNS

studentsthe

S

NNS

professors snore

VP

VB

NP

DT

the

NNS

students

VB

know

DT

the

NP

S

VP

S

. . .
. . .

55

Left-corner parsing

S

VP

NNS

students know

VB

NP

DT

the

NNS

professors snore

VP

VB

SDT

the

NP

S

VP

know

NP

DT

the

NNS

professors snore

VP

VB S

VB

NP

DT NNS

the students

S

NNS

professors snore

VP

VB

NP

DT

the

NNS

students

VP

VB

know

NP

DT

the

S

. . .
. . .

56

Incremental parsing and NNs

+ Only the small fraction of nodes in the parse tree lying on the cut are

active at any point in the string

– Can these be represented and updated by a recurrent NN?

(Charniak)

− These nodes are manipulated with a LIFO stack discipline

– Unnatural in a NN architecture

57

