
Features of Statistical Parsers
Preliminary results

Mark Johnson

Brown University

TTI, October 2003

Joint work with Michael Collins (MIT)

Supported by NSF grants LIS 9720368 and IIS0095940

1

Talk outline

• Statistical parsing from PCFGs to discriminative models

• Linear discriminative models

– conditional estimation and log loss

– over-learning and regularization

• Feature design

– Local and non-local features

– Feature design

• Conclusions and future work

2

Why adopt a statistical approach?

• The interpretation of a sentence is:

– hidden, i.e., not straight-forwardly determined by its words or

sounds

– dependent on many interacting factors, including grammar,

structural preferences, pragmatics, context and general world

knowledge.

– pervasively ambiguous even when all known linguistic and

cognitive constraints are applied

• Statistics is the study of inference under uncertainty

– Statistical methods provide a systematic way of integrating

weak or uncertain information

3

The dilemma of non-statistical CL

1. Ambiguity explodes combinatorially

(162) Even though it’s possible to scan using the Auto Image Enhance mode,

it’s best to use the normal scan mode to scan your documents.

• Refining the grammar is usually self-defeating

⇒ splits states ⇒ makes ambiguity worse!

• Preference information guides parser to correct analysis

2. Linguistic well-formedness leads to non-robustness

• Perfectly comprehensible sentences receive no parses . . .

4

Conventional approaches to robustness

• Some ungrammatical sentences are perfectly comprehensible e.g.,

He walk

– Ignoring agreement ⇒ spurious ambiguity

I saw the father of the children that speak(s) French

• Extra-grammatical rules, repair mechanisms, . . .

– How can semantic interpretation take place without a

well-formed syntactic analysis?

• A preference-based approach can provide a systematic treatment

of robustness too!

5

Linguistics and statistical parsing

• Statistical parsers are not “linguistics-free”

– The corpus contains linguistic information (e.g., the treebank

is based on a specific linguistic theory)

– Linguistic and psycholinguistic insights guide feature design

• What is the most effective way to import linguistic knowledge

into a machine?

– manually specify possible linguistic structures

∗ by explicit specification (a grammar)

∗ by example (an annotated corpus)

– manually specify the model’s features

– learn feature weights from training data

6

Framework of statistical parsing

• X is the set of sentences

• Y(x) is the set of possible linguistic analyses of x ∈ X

• Preference or score Sw(x, y) for each (x, y) parameterized by

weights w

• Parsing a string x involves finding the highest scoring analysis

ŷ(x) = argmax
y∈Y(x)

Sw(x, y)

• Learning or training involves identifying w from data

7

PCFGs and the MLE

S

NP

rice

VP

grows

S

NP

rice

VP

grows

S

NP

corn

VP

grows

rule count rel freq

S → NP VP 3 1

NP → rice 2 2/3

NP → corn 1 1/3

VP → grows 3 1

P




S

NP

rice

VP

grows


 = 2/3

P




S

NP

corn

VP

grows


 = 1/3

8

Non-local constraints

S

NP

rice

VP

grows

S

NP

rice

VP

grows

S

NP

bananas

VP

grow

rule count rel freq

S → NP VP 3 1

NP → rice 2 2/3

NP → bananas 1 1/3

VP → grows 2 2/3

VP → grow 1 1/3

P




S

NP

rice

VP

grows


 = 4/9

P




S

NP

bananas

VP

grow


 = 1/9

Z = 5/9

9

Renormalization

S

NP

rice

VP

grows

S

NP

rice

VP

grows

S

NP

bananas

VP

grow

rule count rel freq

S → NP VP 3 1

NP → rice 2 2/3

NP → bananas 1 1/3

VP → grows 2 2/3

VP → grow 1 1/3

P




S

NP

rice

VP

grows


 = 4/9 4/5

P




S

NP

bananas

VP

grow


 = 1/9 1/5

Z = 5/9

10

Other values do better!

S

NP

rice

VP

grows

S

NP

rice

VP

grows

S

NP

bananas

VP

grow

rule count rel freq

S → NP VP 3 1

NP → rice 2 2/3

NP → bananas 1 1/3

VP → grows 2 1/2

VP → grow 1 1/2

(Abney 1997)

P




S

NP

rice

VP

grows


 = 2/6 2/3

P




S

NP

bananas

VP

grow


 = 1/6 1/3

Z = 3/6

11

Make dependencies local – GPSG-style

rule count rel freq

S → NP
+singular

VP
+singular 2 2/3

S → NP
+plural

VP
+plural 1 1/3

NP
+singular → rice 2 1

NP
+plural → bananas 1 1

VP
+singular → grows 2 1

VP
+plural → grow 1 1

P




S

NP
+singular

rice

VP
+singular

grows




= 2/3

P




S

NP
+plural

bananas

VP
+plural

grow




= 1/3

12

Generative vs. Discriminative models

Generative models: features are context-free

• rules (local trees) are “natural” features

• the MLE of w is easy to compute (in principle)

Discriminative models: features have unknown

dependencies

− no “natural” features

− estimating w is much more complicated

+ features need not be local trees

+ representations need not be trees

13

Generative vs Discriminative training

100×

VP

V

run 2×

VP

VP

V

see

NP

N

people

PP

P

with

NP

N

telescopes
1×

VP

V

see

NP

NP

N

people

PP

P

with

NP

N

telescopes

. . . × 2/105 × × 1/7 × . . .

. . . × 2/7 × × 1/7 × . . .

Rule count rel freq rel freq

VP → V 100 100/105 4/7

VP → V NP 3 3/105 1/7

VP → VP PP 2 2/105 2/7

NP → N 6 6/7 6/7

NP → NP PP 1 1/7 1/7

14

Features in standard generative models

• Lexicalization or head annotation captures subcategorization of lexical

items and primitive world knowledge

• Trained from Penn treebank corpus (≈ 40,000 trees, 1M words)

• Sparse data is the big problem, so smoothing or generalization is most

important!

VP
sank → VB

sank
NP
boat

the

S
sank

NP
torpedo

DT

the

NN
torpedo

torpedo

VP
sank

VB
sank

sank

NP
boat

DT
the

the

NN
boat

boat

15

Many useful features are non-local

• Many desirable features are difficult to localize (i.e., express in terms

of annotation on labels)

– Verb-particle constructions

Sam gave chocolates out/up/to Sandy

– Head-to-head dependencies in coordinate structures

[[the students]and [the professor]]ate a pizza

• Some features seem inherently non-local

– Heavy constituents prefer to be at the end

Sam donated to the library a collection ?(that it took her years to

assemble)

– Parallelism in coordination

Sam saw a man with a telescope and a woman with binoculars
?Sam [saw a man with a telescope and a woman] with binoculars

16

Framework for discriminative parsing

• Generate candidate parses Y(x)

for each sentence x

• Each parse y ∈ Y(x) is mapped

to a feature vector f(x, y)

• Each feature fj is associated with

a weight wj

• Define S(x, y) = w · f(x, y)

• The highest scoring parse

ŷ = argmax
y∈Y(x)

S(x, y)

is predicted correct

sentence x

yk. . .

. . .f(x, y1) f(x, yk)

w · f(x, y1) w · f(x, yk). . .

Collins model 3

parses Y(x)y1

features

scores S(x, y)

17

Log linear models

• The log likelihood is a linear function of feature values

• Y = set of syntactic structures (not necessarily trees)

• fj(y) = number of occurences of jth feature in y ∈ Y

(these features need not be conventional linguistic features)

• wj are “feature weight” parameters

Sw(y) =
m∑

j=1

wjfj(y)

y

Y

Vw(y) = expSw(y)

Zw =
∑

y∈Y

Vw(y)

Pw(y) =
Vw(y)

Zw

, log Pλ(y) =
m∑

j=1

wjfj(y) − log Zw

18

PCFGs are log-linear models

Y = set of all trees generated by grammar G

fw(y) = number of times the jth rule is used in y ∈ Y

pj = probability of jth rule in G wj = log pj

f




S

NP

rice

VP

grows


 = [1︸︷︷︸

S→NP VP

, 1︸︷︷︸
NP→rice

, 0︸︷︷︸
NP→bananas

, 1︸︷︷︸
VP→grows

, 0︸︷︷︸
VP→grow

]

Pw(y) =
m∏

j=1

p
fj(y)
j = exp(

m∑

j=1

wjfj(ω)) where wj = log pj

19

ML estimation for log linear models

yi
Y

D = y1, . . . , yn

ŵ = argmax
w

LD(w)

LD(w) =
n∏

i=1

Pw(yi)

Pw(y) =
Vw(y)

Zw

Vw(y) = exp
∑

j

wjfj(y) Zw =
∑

y′∈Y

Vw(y′)

• For a PCFG, ŵ is easy to calculate, but . . .

• in general ∂LD/∂wj and Zw are intractable analytically and

numerically

• Abney (1997) suggests a Monte-Carlo calculation method

20

Conditional estimation and pseudo-likelihood

The pseudo-likelihood of w is the conditional probability of the hidden

part (syntactic structure) w given its visible part (yield or terminal

string) x = X(y) (Besag 1974)

Y

yi

Y(xi) = {y : X(y) = X(yi)} ŵ = argmax
λ

PLD(w)

PLD(w) =
n∏

i=1

Pλ(yi|xi)

Pw(y|x) =
Vw(y)

Zw(x)

Vw(y) = exp
∑

j

wjfj(y) Zw(x) =
∑

y′∈Y(x)

Vw(y′)

21

Conditional estimation

• The pseudo-partition function Zw(x) is much easier to compute

than the partition function Zw

– Zw requires a sum over Y

– Zw(x) requires a sum over Y(x) (parses of x)

• Maximum likelihood estimates full joint distribution

– learns P(x) and P(y|x)

• Conditional ML estimates a conditional distribution

– learns P(y|x) but not P(x)

– conditional distribution is what you need for parsing

– cognitively more plausible?

• Conditional estimation requires labelled training data: no

obvious EM extension

22

Conditional estimation

Correct
parse’s

features
All other parses’ features

sentence 1 [1, 3, 2] [2, 2, 3] [3, 1, 5] [2, 6, 3]

sentence 2 [7, 2, 1] [2, 5, 5]

sentence 3 [2, 4, 2] [1, 1, 7] [7, 2, 1]

.

• Training data is fully observed (i.e., parsed data)

• Choose w to maximize (log) likelihood of correct parses relative

to other parses

• Distribution of sentences is ignored

• Nothing is learnt from unambiguous examples

• Other discriminative learners solve this problem in different ways
23

Pseudo-constant features are uninformative

Correct
parse’s

features
All other parses’ features

sentence 1 [1, 3, 2] [2, 2, 2] [3, 1, 2] [2, 6, 2]

sentence 2 [7, 2, 5] [2, 5, 5]

sentence 3 [2, 4, 4] [1, 1, 4] [7, 2, 4]

.

• Pseudo-constant features are identical within every set of parses

• They contribute the same constant factor to each parses’

likelihood

• They do not distinguish parses of any sentence ⇒ irrelevant

24

Pseudo-maximal features ⇒ unbounded ŵj

Correct
parse’s

features
All other parses’ features

sentence 1 [1, 3 , 2] [2, 3 , 4] [3, 1 , 1] [2, 1 , 1]

sentence 2 [2, 7 , 4] [3, 7 , 2]

sentence 3 [2, 4 , 4] [1, 1 , 1] [1, 2 , 4]

• A pseudo-maximal feature always reaches its maximum value

within a parse on the correct parse

• If fj is pseudo-maximal, ŵj → ∞ (hard constraint)

• If fj is pseudo-minimal, ŵj → −∞ (hard constraint)

25

Regularization

• fj is pseudo-maximal over training data 6⇒ fj is pseudo-maximal

over all Y (sparse data)

• With many more features than data, log-linear models can

over-fit

• Regularization: add bias term to ensure ŵ is finite and small

• In these experiments, the regularizer is a polynomial penalty

term

ŵ = argmax
w

log PLD(w) − c
m∑

j=1

|wj |
p

26

Experiments in Discriminative Parsing

• Collins Model 3 parser pro-

duces a set of candidate parses

Y(x) for each sentence x

• The discriminative parser has

a weight wj for each feature fj

• The score for each parse is

S(x, y) = w · f(x, y)

• The highest scoring parse

ŷ = argmax
y∈Y(x)

S(x, y)

is predicted correct

sentence x

yk. . .

. . .f(x, y1) f(x, yk)

w · f(x, y1) w · f(x, yk). . .

Collins model 3

parses Y(x)y1

features

scores S(x, y)

27

Evaluating a parser

• A node’s edge is its label and beginning and ending string positions

• E(y) is the set of edges associated with a tree y (same with forests)

• If y is a parse tree and ȳ is the correct tree, then

precision Pȳ(y) = |E(y)|/|E(y) ∩ E(ȳ)|

recall Rȳ(y) = |E(ȳ)|/|E(y) ∩ E(ȳ)|

f score Fȳ(y) = 2/(Pȳ(y)−1 + Rȳ(y)−1)

Edges

(0 NP 2)

(2 VP 3)

(0 S 3)

ROOT

S

NP

DT

the

N

dog

VP

VB

barks
30 1 2

28

Training the discriminative parser

• The sentence xi associated with each

tree ȳi in the training corpus is parsed

with the Collins parser, yielding Y(xi)

• Best parse ỹi = argmaxy∈Y(xi) Fȳi
(y)

• w is chosen to maximize the

regularized log pseudo-likelihood
∑

i log Pw(ỹi|xi) + R(w)

Y

ỹi

Y(xi)
ȳi

29

Baseline and oracle results

• Training corpus: 36,112 Penn treebank trees, development

corpus 3,720 trees from sections 2-21

• Collins parser failed to produce a parse on 115 sentences

• Average |Y(x)| = 36.1

• Collins parser f -score = 0.882 (picking parse with highest

probability under Collins’ generative model)

• Oracle (maximum possible) f -score = 0.953

(i.e., evaluate f -score of closest parses ỹi)

⇒ Oracle (maximum possible) error reduction 0.601

30

Expt 1: Only “old” features

• Collins’ parser already conditions on lexicalized rules

• Features: (1) log Collins probability, (9717) local tree features

• Feature selection: features must vary on 5 or more sentences

• Results: f -score = 0.886; ≈ 4% error reduction

⇒ discriminative training may produce better parsers

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

31

Expt 2: Rightmost branch bias

• The RightBranch feature’s value is the number of nodes on the

right-most branch (ignoring punctuation)

• Reflects the tendancy toward right branching

• LogProb + RightBranch: f -score = 0.884 (probably significant)

• LogProb + RightBranch + Rule: f -score = 0.889

ROOT

WDT

That went

over

DT

the

JJ

permissible

NN

line

IN

for

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.PP

VP

S

NP

PP

NP

NP

VBD

IN

NP

ADJP

32

Lexicalized and parent-annotated rules

• Lexicalization associates each constituent with its head

• Parent annotation provides a little “vertical context”

• With all combinations, there are 158,890 rule features

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

Heads

Rule

Grandparent

33

Head to head dependencies

• Head-to-head dependencies track the function-argument

dependencies in a tree

• Co-ordination leads to phrases with multiple heads or functors

• With all combinations, there are 121,885 head-to-head features

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

34

Constituent Heavyness and location

• Heavyness measures the constituent’s category, its (binned) size

and (binned) closeness to the end of the sentence

• There are 984 Heavyness features

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

> 5 words =1 punctuation

35

Tree n-gram

• A tree n-gram are tree fragments that connect sequences of

adjacent n words

• There are 62,487 tree n-gram features

ROOT

S

NP

WDT

That

VP

VBD

went

PP

IN

over

NP

NP

DT

the

JJ

permissible

NN

line

PP

IN

for

NP

ADJP

JJ

warm

CC

and

JJ

fuzzy

NNS

feelings

.

.

36

Regularization

• General form of regularizer: c
∑

j |wj |
p

• p = 1 leads to sparse weight vectors.

– If |∂L/∂wj | < c then wj = 0

• Experiment on small feature set:

– 164,273 features

– c = 2, p = 2, f -score = 0.898

– c = 4, p = 1, f -score = 0.896, only 5,441 non-zero features!

– Earlier experiments suggested that optimal performance is

obtained with p ≈ 1.5

37

Experimental results with all features

• 692,708 features

• regularization term: 4
∑

j |wj |
2

• dev set results: f-score = 0.9024 (17% error reduction)

38

Cross-validating regularizer weights

• The features are naturally divided into classes

• Each class can be associated with its own regularizer constant c

• These regularizer classes can be adjusted to maximize

performance on the dev set

• Evaluation is still running . . .

39

Evaluating feature classes

∆ f-score ∆ − logL features zeroed class

-0.0201874 1972.17 1 LogProb

-0.00443139 291.523 59567 NGram

-0.00434744 223.566 108933 Rule

-0.00359524 203.377 2 RightBranch

-0.00248663 62.5268 984 Heavy

-0.00220132 49.6187 195244 Heads

-0.00215015 71.6588 32087 Neighbours

-0.00162792 92.557 169903 NGramTree

-0.00119068 164.441 37068 Word

-0.000203843 -0.155993 1820 SynSemHeads

-1.42435e-05 -1.39079 18488 RHeads

9.98055e-05 0.237878 16140 LHeads

40

Other ideas we’ve tried

• Optimizing exp-loss instead of log-loss

• Averaged perceptron classifier with cross-validated feature class

weights

• 2-level neural network classifier

41

Conclusion and directions for future work

• Discriminatively trained parsing models can perform better than

standard generative parsing models

• Features can be arbitrary functions of parse trees

– Are there techniques to help us explore the space of possible

feature functions?

• Can these techniques be applied to problems that now require

generative models?

– speech recognition

– machine translation

42

