Features of Statistical Parsers Preliminary results

Mark Johnson

Brown University

TTI, October 2003

Joint work with Michael Collins (MIT) Supported by NSF grants LIS 9720368 and IIS0095940

Talk outline

- Statistical parsing from PCFGs to discriminative models
- Linear discriminative models
 - conditional estimation and log loss
 - over-learning and regularization
- Feature design
 - Local and non-local features
 - Feature design
- Conclusions and future work

Why adopt a statistical approach?

- The interpretation of a sentence is:
 - *hidden*, i.e., not straight-forwardly determined by its words or sounds
 - *dependent on many interacting factors*, including grammar, structural preferences, pragmatics, context and general world knowledge.
 - *pervasively ambiguous* even when all known linguistic and cognitive constraints are applied
- Statistics is the study of inference under uncertainty
 - Statistical methods provide a systematic way of integrating weak or uncertain information

The dilemma of non-statistical CL

- 1. Ambiguity explodes combinatorially
 - (162) Even though it's possible to scan using the Auto Image Enhance mode, it's best to use the normal scan mode to scan your documents.
 - Refining the grammar is usually self-defeating
 ⇒ splits states ⇒ makes ambiguity worse!
 - Preference information guides parser to correct analysis
- 2. Linguistic well-formedness leads to non-robustness
 - Perfectly comprehensible sentences receive no parses ...

Conventional approaches to robustness

- Some ungrammatical sentences are perfectly comprehensible e.g., *He walk*
 - Ignoring agreement \Rightarrow spurious ambiguity I saw the father of the children that speak(s) French
- Extra-grammatical rules, repair mechanisms, ...
 - How can semantic interpretation take place without a well-formed syntactic analysis?
- A preference-based approach can provide a systematic treatment of robustness too!

Linguistics and statistical parsing

- Statistical parsers are not "linguistics-free"
 - The corpus contains linguistic information (e.g., the treebank is based on a specific linguistic theory)
 - Linguistic and psycholinguistic insights guide feature design
- What is the most effective way to import linguistic knowledge into a machine?
 - *manually specify* possible linguistic structures
 - * by explicit specification (a grammar)
 - * by example (an annotated corpus)
 - *manually specify* the model's features
 - *learn* feature weights from training data

Framework of statistical parsing

- \mathcal{X} is the set of sentences
- $\mathcal{Y}(x)$ is the set of possible linguistic analyses of $x \in \mathcal{X}$
- Preference or score $S_w(x, y)$ for each (x, y) parameterized by weights w
- Parsing a string x involves finding the highest scoring analysis

$$\hat{y}(x) = \operatorname*{argmax}_{y \in \mathcal{Y}(x)} S_w(x, y)$$

• Learning or training involves identifying w from data

PCFGs and the MLE

Non-local constraints

Renormalization

Other values do better!

Make dependencies local – GPSG-style

Generative vs. Discriminative models

Generative models: features are context-free

- rules (local trees) are "natural" features
- the MLE of w is easy to compute (in principle)

Discriminative models: features have unknown dependencies

- no "natural" features
- estimating w is much more complicated
- + features need not be local trees
- + representations need not be trees

Generative vs Discriminative training

Rule	count	rel freq	rel freq
$\mathrm{VP} \to \mathrm{V}$	100	100/105	4/7
$\mathrm{VP} \to \mathrm{V} \; \mathrm{NP}$	3	3/105	1/7
$\mathrm{VP} \to \mathrm{VP} \; \mathrm{PP}$	2	2/105	$\mathbf{2/7}$
$\mathrm{NP} \to \mathrm{N}$	6	6/7	6/7
$\mathrm{NP} \to \mathrm{NP} \; \mathrm{PP}$	1	1/7	1/7

Features in standard generative models

- *Lexicalization* or *head annotation* captures *subcategorization* of lexical items and primitive *world knowledge*
- Trained from Penn treebank corpus ($\approx 40,000$ trees, 1M words)
- Sparse data is the big problem, so smoothing or generalization is most important! S

Many useful features are non-local

- Many desirable features are difficult to localize (i.e., express in terms of annotation on labels)
 - Verb-particle constructions
 Sam gave chocolates out/up/to Sandy
 - Head-to-head dependencies in coordinate structures
 [[the students] and [the professor]] ate a pizza
- Some features seem inherently non-local
 - Heavy constituents prefer to be at the end
 Sam donated to the library a collection ? (that it took her years to assemble)
 - Parallelism in coordination
 Sam saw a man with a telescope and a woman with binoculars
 - [?]Sam [saw a man with a telescope and a woman] with binoculars

Framework for discriminative parsing

- Generate *candidate parses* $\mathcal{Y}(x)$ for each sentence x
- Each parse $y \in \mathcal{Y}(x)$ is mapped to a feature vector f(x, y)
- Each feature f_j is associated with a weight w_j
- Define $S(x, y) = w \cdot f(x, y)$
- The highest scoring parse

 $\hat{y} = \operatorname*{argmax}_{y \in \mathcal{Y}(x)} S(x, y)$

is predicted correct

Log linear models

- The *log likelihood* is a *linear* function of feature values
- $\mathcal{Y} = \text{set of syntactic structures (not necessarily trees)}$
- $f_j(y)$ = number of occurrences of *j*th feature in $y \in \mathcal{Y}$ (these features need not be conventional linguistic features)
- w_j are "feature weight" parameters

PCFGs are log-linear models

 $\mathcal{Y} = \text{set of all trees generated by grammar } G$ $f_w(y) = \text{number of times the } j \text{th rule is used in } y \in \mathcal{Y}$ $p_j = \text{probability of } j \text{th rule in } G$ $w_j = \log p_j$

$$f\left(\overbrace{\substack{\text{NP} \quad \text{VP} \\ | \quad | \\ \text{rice grows}}}^{\text{S}}\right) = \left[\underbrace{1}_{\text{S} \to \text{NP} \text{VP}}, \underbrace{1}_{\text{NP} \to \text{rice NP} \to \text{bananas}}, \underbrace{1}_{\text{VP} \to \text{grows}}, \underbrace{0}_{\text{VP} \to \text{grows}}, \underbrace{0}_{\text{VP} \to \text{grows}}\right]$$

$$P_w(y) = \prod_{j=1}^m p_j^{f_j(y)} = \exp(\sum_{j=1}^m w_j f_j(\omega)) \quad \text{where } w_j = \log p_j$$

ML estimation for log linear models

$$D = y_1, \dots, y_n$$

$$\widehat{w} = \operatorname{argmax}_w L_D(w)$$

$$L_D(w) = \prod_{i=1}^n P_w(y_i)$$

$$P_w(y) = \frac{V_w(y)}{Z_w} \quad V_w(y) = \exp \sum_j w_j f_j(y) \quad Z_w = \sum_{y' \in \mathcal{Y}} V_w(y')$$

- For a PCFG, \hat{w} is easy to calculate, but . . .
- in general $\partial L_D / \partial w_j$ and Z_w are *intractable analytically and numerically*
- Abney (1997) suggests a Monte-Carlo calculation method

Conditional estimation and pseudo-likelihood

The *pseudo-likelihood* of w is the *conditional probability* of the *hidden part* (syntactic structure) w given its *visible part* (yield or terminal string) x = X(y) (Besag 1974)

$$V_w(y) = \exp \sum_j w_j f_j(y) \qquad Z_w(x) = \sum_{y' \in \mathcal{Y}(x)} V_w(y')$$

Conditional estimation

- The pseudo-partition function $Z_w(x)$ is much easier to compute than the partition function Z_w
 - Z_w requires a sum over \mathcal{Y}
 - $Z_w(x)$ requires a sum over $\mathcal{Y}(x)$ (parses of x)
- *Maximum likelihood* estimates full joint distribution

- learns P(x) and P(y|x)

- *Conditional ML* estimates a conditional distribution
 - learns P(y|x) but not P(x)
 - conditional distribution is what you need for parsing
 - cognitively more plausible?
- Conditional estimation requires labelled training data: no obvious EM extension

Conditional estimation

	Correct parse's features	All other parses' features
sentence 1	[1,3,2]	$\left[2,2,3 ight]\left[3,1,5 ight]\left[2,6,3 ight]$
sentence 2	$\left[7,2,1 ight]$	$\left[2,5,5 ight]$
sentence 3	[2, 4, 2]	$[1,1,7] \ [7,2,1]$
	• • •	•••

- Training data is *fully observed* (i.e., parsed data)
- Choose *w* to maximize (log) likelihood of *correct* parses relative to other parses
- Distribution of *sentences* is ignored
- Nothing is learnt from unambiguous examples
- Other discriminative learners solve this problem in different ways

Pseudo-constant features are uninformative

	Correct parse's features	All other parses' features
sentence 1	[1, 3, 2]	[2, 2, 2] [3, 1, 2] [2, 6, 2]
sentence 2	[7,2,5]	[2, 5, 5]
sentence 3	[2, 4, 4]	$[1, 1, 4] \; [7, 2, 4]$
• • •	• • •	•••

- *Pseudo-constant features* are identical within every set of parses
- They contribute the same constant factor to each parses' likelihood
- They do not distinguish parses of any sentence \Rightarrow irrelevant

Pseudo-maximal features \Rightarrow **unbounded** $\widehat{w_j}$

	Correct parse's features	All other parses' features
sentence 1	[1, 3, 2]	[2, 3, 4] [3, 1, 1] [2, 1, 1]
sentence 2	[2, 7, 4]	[3, 7, 2]
sentence 3	[2, 4 , 4]	$[1, 1, 1] \; [1, 2, 4]$

- A *pseudo-maximal feature* always reaches its maximum value within a parse on the correct parse
- If f_j is pseudo-maximal, $\widehat{w_j} \to \infty$ (hard constraint)
- If f_j is pseudo-minimal, $\widehat{w_j} \to -\infty$ (hard constraint)

Regularization

- f_j is pseudo-maximal over training data $\neq f_j$ is pseudo-maximal over all \mathcal{Y} (sparse data)
- With many more features than data, log-linear models can over-fit
- Regularization: add *bias* term to ensure \hat{w} is finite and small
- In these experiments, the regularizer is a polynomial penalty term

$$\widehat{w} = \operatorname*{argmax}_{w} \log \operatorname{PL}_{D}(w) - c \sum_{j=1}^{m} |w_{j}|^{p}$$

Experiments in Discriminative Parsing

- Collins Model 3 parser produces a set of candidate parses
 \$\mathcal{Y}(x)\$ for each sentence \$x\$
- The discriminative parser has a weight w_j for each feature f_j
- The score for each parse is $S(x,y) = w \cdot f(x,y)$
- The highest scoring parse

 $\hat{y} = \operatorname*{argmax}_{y \in \mathcal{Y}(x)} S(x, y)$

is predicted correct

Evaluating a parser

- A node's *edge* is its label and beginning and ending *string positions*
- E(y) is the set of edges associated with a tree y (same with forests)
- If y is a parse tree and \bar{y} is the correct tree, then precision $P_{\bar{y}}(y) = |E(y)|/|E(y) \cap E(\bar{y})|$ recall $R_{\bar{y}}(y) = |E(\bar{y})|/|E(y) \cap E(\bar{y})|$ f score $F_{\bar{y}}(y) = 2/(P_{\bar{y}}(y)^{-1} + R_{\bar{y}}(y)^{-1})$

Training the discriminative parser

- The sentence x_i associated with each $\mathcal{Y}(x_i)$ tree \bar{y}_i in the training corpus is parsed with the Collins parser, yielding $\mathcal{Y}(x_i)$
- Best parse $\tilde{y}_i = \operatorname{argmax}_{y \in \mathcal{Y}(x_i)} F_{\bar{y}_i}(y)$
- w is chosen to maximize the regularized log pseudo-likelihood $\sum_i \log P_w(\tilde{y}_i|x_i) + R(w)$

Baseline and oracle results

- Training corpus: 36,112 Penn treebank trees, development corpus 3,720 trees from sections 2-21
- Collins parser failed to produce a parse on 115 sentences
- Average $|\mathcal{Y}(x)| = 36.1$
- Collins parser f-score = 0.882 (picking parse with highest probability under Collins' generative model)
- Oracle (maximum possible) f-score = 0.953 (i.e., evaluate f-score of closest parses \tilde{y}_i)
- \Rightarrow Oracle (maximum possible) error reduction 0.601

Expt 1: Only "old" features

- Collins' parser already conditions on lexicalized rules
- Features: (1) log Collins probability, (9717) local tree features
- Feature selection: features must vary on 5 or more sentences
- Results: f-score = 0.886; $\approx 4\%$ error reduction
- \Rightarrow discriminative training may produce better parsers

Expt 2: Rightmost branch bias

- The RightBranch feature's value is the number of nodes on the right-most branch (ignoring punctuation)
- Reflects the tendancy toward right branching
- LogProb + RightBranch: f-score = 0.884 (probably significant)
- LogProb + RightBranch + Rule: f-score = 0.889

Lexicalized and parent-annotated rules

- *Lexicalization* associates each constituent with its head
- *Parent annotation* provides a little "vertical context"
- With all combinations, there are 158,890 rule features

Head to head dependencies

- Head-to-head dependencies track the function-argument dependencies in a tree
- Co-ordination leads to phrases with multiple heads or functors
- With all combinations, there are 121,885 head-to-head features

Constituent Heavyness and location

- Heavyness measures the constituent's category, its (binned) size and (binned) closeness to the end of the sentence
- There are 984 Heavyness features

> 5 words

=1 punctuation

Tree *n*-gram

- A tree *n*-gram are tree fragments that connect sequences of adjacent *n* words
- There are 62,487 tree *n*-gram features

Regularization

- General form of regularizer: $c \sum_j |w_j|^p$
- p = 1 leads to sparse weight vectors.

- If $|\partial L/\partial w_j| < c$ then $w_j = 0$

- Experiment on small feature set:
 - 164,273 features

$$-c = 2, p = 2, f$$
-score = 0.898

- -c = 4, p = 1, f-score = 0.896, only 5,441 non-zero features!
- Earlier experiments suggested that optimal performance is obtained with $p\approx 1.5$

Experimental results with all features

- 692,708 features
- regularization term: $4\sum_j |w_j|^2$
- dev set results: f-score = 0.9024 (17% error reduction)

Cross-validating regularizer weights

- The features are naturally divided into classes
- Each class can be associated with its own regularizer constant c
- These regularizer classes can be adjusted to maximize performance on the dev set
- Evaluation is still running ...

Evaluating feature classes

Δ f-score	$\Delta - logL$	features	zeroed class
-0.0201874	1972.17	1	LogProb
-0.00443139	291.523	59567	NGram
-0.00434744	223.566	108933	Rule
-0.00359524	203.377	2	RightBranch
-0.00248663	62.5268	984	Heavy
-0.00220132	49.6187	195244	Heads
-0.00215015	71.6588	32087	Neighbours
-0.00162792	92.557	169903	NGramTree
-0.00119068	164.441	37068	Word
-0.000203843	-0.155993	1820	SynSemHeads
-1.42435e-05	-1.39079	18488	RHeads
9.98055e-05	0.237878	16140	LHeads

Other ideas we've tried

- Optimizing exp-loss instead of log-loss
- Averaged perceptron classifier with cross-validated feature class weights
- 2-level neural network classifier

Conclusion and directions for future work

- Discriminatively trained parsing models can perform better than standard generative parsing models
- Features can be arbitrary functions of parse trees
 - Are there techniques to help us explore the space of possible feature functions?
- Can these techniques be applied to problems that now require generative models?
 - speech recognition
 - machine translation