Automated Assessment in the Internet Classroom

Dave Barker-Plummer
CSLI, Stanford University
Stanford, California, 94305, USA

Richard Cox

Department of Informatics, University of Sussex

Falmer, E. Sussex, BN1 9QJ, UK

Abstract

A likely feature of the Internet classroom is automated as-
sessment of student exercises. In this paper, we describe
the design and implementation of the Grade Grinder, an
Internet-based assessment service developed for use with
logic-teaching courseware. We discuss the utility of this plat-
form both as a pedagogical resource, and as a provider of data
for research on student problem-solving. We end by making
some observations in regard to the scope for extending this
approach beyond the domain of logic-teaching to other do-
mains.

Introduction

The Grade Grinder is an innovative Internet-based assess-
ment service for logic education. Access to the Grade
Grinder is available to users of the Language, Proof and
Logic courseware package for teaching formal logic to un-
dergraduates (Barwise et al. 1999). These packages each
consist of a textbook, some desktop applications used to
complete exercises, and access to the Grade Grinder. Stu-
dents receive reports on their submitted work by email, usu-
ally within minutes. The Grade Grinder has been in contin-
uous service for more than eight years, and has been used
by more than 38,000 students at more than a hundred insti-
tutions in at least a dozen countries.

For students, the Grade Grinder serves as a teaching as-
sistant that is available twenty-four hours a day seven days
a week. The feedback provided by the Grade Grinder al-
lows students to work to correct their errors on their own
and thereby facilitates self-directed learning. Once a student
has perfected her work, or her deadline arrives, the Grade
Grinder can be instructed to copy the grade report to her
instructor. Thus, the Grade Grinder provides formative as-
sessment that is individualised, on-demand, immediate, and
motivational (Ridgway, McCusker, and Pead 2004).

For instructors, the Grade Grinder facilitates the focus of
resources on those students who are unable to work to the
correct result on their own, and who are likely to have deeper
conceptual problems, rather than minor technical ones. The

Robert Dale

Centre for Language Technology, Macquarie University

Sydney, NSW 2109, Australia

John Etchemendy
CSLI and Philosophy, Stanford University
Stanford, California, 94305, USA

instructor may use the results of student submissions for
summative assessment (e.g., to assign grades), or to focus
instruction on topics that are causing difficulty.

For researchers, the Grade Grinder has accumulated a
very large corpus of work produced by students learning
logic. This database has high ecological validity and can
be exploited in order to gain insights into the cognitive pro-
cesses in play during formal reasoning (such as those as-
sociated with natural-to-formal language translation and in-
terpretation), to extend research into individual differences
in reasoning, to improve logic instruction, and of course to
improve the performance and design of the courseware, in-
cluding Grade Grinder itself.

In this paper we describe the design and implementation
of the Grade Grinder service. We discuss possibilities for
generalising the Grade Grinder for assessment in other sub-
ject areas and outline our recent research data mining the
corpus of submissions (over 1.8 million of them) to discover
patterns in student performance using the courseware.

Design and Implementation

In designing the Grade Grinder, we have taken the view that
the software should be able to assess complex exercises typ-
ically set in a logic courses, rather than requiring us to tailor
the exercises to those which are simple to grade automati-
cally. For example, there are no “multiple choice” exercises
in either of the courseware packages. In fact, the Grade
Grinder allows the creation of exercises which might oth-
erwise be too complicated for instructors to set. Some of
the exercises have infinitely many correct answers, and even
skilled logicians might have difficulty determining whether
or not a student’s answer is correct. By implementing com-
plex algorithms within the Grade Grinder (for proving log-
ical equivalence of answers) and providing automated as-
sessment, we have expanded, rather than limited, the range
of exercises that can realistically be assigned to students.
The Grade Grinder can assess a wide range of tasks spe-
cific to the subject domain of logic. These include the con-
struction of proofs, the construction of truth tables, the trans-

£ [new A H o S e alblc

LR

@ Untitled World

Blocks | Pets Set Arith |

~ Tet Small LeftOf | SameCol | Smaller |

| verify | Add Before

ajbjcjdje

Cube Medium RightOf | SameRow | Larger | Verify All | Add After

f|
M El AR | Dodec Large FrontQf | Between
o

x{lyfzfujv

| sameShape| SameSize | Back0f | Adjoins | Game Delete |

@ Untitled Sentences

T 1. Tet(a) — Tet(b)

T 2. Tet(b) —= Tet(c)

T 3. (Tet(a) » Tet(c)) = (Large(a) v Large(c))

Figure 1: Tarski’s World

lation of sentences from natural language into formal logic,
the construction of “worlds” that make a collection of sen-
tences true, and so forth. Some exercises require the simul-
taneous solution of more than one of these tasks, and others
require the completion of some task but the student is not
initially told which (for example, a student may be asked
to either complete a proof of, or build a counterexample to,
some claim.)

As a concrete example, the student might be asked to
translate a natural language sentence such as every dodec-
ahedron is in front of a cube, into first-order logic. Using
our Tarski’'s World application (Figure 1), they can enter their
translation and then build and examine a variety of configu-
rations of blocks, tracking the truth of their formal sentence
in the different configurations.

To accommodate the flexibility required to set these ex-
ercises, the Grade Grinder is designed in a modular fash-
ion. Internally, there are a number of Grader Units, each
of which is responsible for assessing the completion of a
particular kind of task. A database of Grading Instructions
records which Grader Units are required to assess which ex-
ercises. The domain knowledge lies in the Grader Units,
while knowledge of the exercises written in the textbooks
lies in the database. This architecture makes it straightfor-
ward to modify the Grade Grinder to assess work in other
domains (since new Grader Units could be implemented and
included in the running system), and to create new exercises
using the same Grader Units.

Instructor Features

Several features are included in the Grade Grinder aimed
specifically at instructors. When an exercise is submitted
to an instructor the grade report email is copied to them.
The report and supporting files are also collected on our web

server. The instructor can log on to the web server and ac-
cess the complete set of reports for her students, segmented
by time period if desired. The instructor may view each of
the submitted files within the web page, or download a copy
to their local machine if required. Even without the assess-
ment portion of the service, the Grade Grinder performs the
useful function of collecting and organising student submis-
sions freeing the instructor from collecting disks, managing
drop boxes, losing student work, and opening individual files
by hand.

One concern often expressed by instructors about student
use of computers in their work is the ease with which work
can be shared by students. Our courseware packages address
this issue by including pseudo-unique keys in the files cre-
ated by our desktop applications. These keys do not depend
on the content of the file (two identical solutions derived in-
dependently are almost guaranteed to have different keys)
but are based on the times at which the file has been modi-
fied. When the file is submitted, the Grade Grinder checks
the key in the file against all others it has ever received, and
includes a report of “collisions” in the grade report. If the
keys are identical, then two (or more) students have submit-
ted the very same file. If two files share a common prefix,
then a common source file was shared and then indepen-
dently modified to create the two files.

Data Mining Research

In (Barwise and Etchemendy 1998) the authors describe how
developing educational software informs their understand-
ing of the subject matter and their future research program.
We are actively pursuing further new research avenues made
possible by the development of the Grade Grinder.

In (Barker-Plummer et al. 2008; Cox et al. 2008) we
present research results based on data mining of the student
submissions to the Grade Grinder. A principle aim of this
work is to characterise and taxonomise student errors and
develop cognitive (information processing) accounts of their
origin. Another aim is to improve the Grade Grinder’s ca-
pabilities with respect to error diagnosis and feedback; this
might be achieved via the addition of learner modelling. The
Grade Grinder’s feedback might be enriched through the use
of automatic natural language paraphrasing so that the sys-
tem is able to select and formulate an appropriate natural
language expression that makes clear the difference between
a student’s incorrect answer and the correct one.

In (Barker-Plummer et al. 2008), we present empirical ev-
idence for specific characteristics of natural language prob-
lem statements that frequently lead to students making mis-
takes. We developed a rich taxonomy of the types of errors
that students make, and implemented tools for automatically
classifying student errors into these categories. In that pa-
per, we focus on three specific phenomena that were preva-
lent in our data: Students were found (a) to have particular
difficulties with distinguishing the conditional from the bi-
conditional, (b) to be sensitive to word-order effects during
translation, and (c) to be sensitive to factors associated with
the naming of constants. This information is of significant
value in directing subsequent revisions to the exercises and
in determining the form and content of new exercises.

In (Cox et al. 2008), we report some initial results that
demonstrate that when we look at how students construct di-
agrammatic representations of information expressed in nat-
ural language sentences, this reveals misunderstandings that
would not otherwise be apparent. In particular, constructing
a diagram requires the student to provide an instantiated rep-
resentation of the meaning of a natural language sentence,
testing their understanding in a way that translation into first-
order logic does not.

Learner Modeling and Visible Learning

Our current activities involve developing metadata coding
methods for marking-up exercises and students’ solutions.
Dimensions we are attempting to represent in the scheme
include: task difficulty and cognitive load (assessed in terms
of the number of blocks world entities involved in an ex-
ercise, the types of predicates and connectives used, and
the linguistic complexity of the natural language sentences
to be interpreted); graphical agency (does the exercise re-
quire the student to check solutions against a prefabricated
blocks world, or is she asked to construct her own world
from scratch?); and the degree of between-modality transla-
tion (natural language to first-order logic and/or to diagram;
natural language to diagram and/or to first-order logic, and
so on). Our intent is that these codings, together with the stu-
dent error analysis findings, will provide a basis for the hi-
erarchical decomposition of the Language, Proof and Logic
curriculum, in terms of conceptual knowledge pre-requisites
and co-requisites. This could be machine-represented, per-
haps as a Bayesian Belief Network (BBN) e.g. (Zapata-
Rivera and Greer 2004; Grawemeyer and Cox 2005); the
BBN would, in turn, provide a model against which an indi-
vidual’s learning profile could be ‘traced’ e.g. (Koedinger
and Anderson 1999).

A model-tracing approach would support improved error
diagnosis and feedback by the Grade Grinder and may also
permit advice-giving regarding prospective pitfalls. So, for
example, we would be in a position to automatically gener-
ate advice like the following:

78% of students who, like you, make errors associ-
ated with confounding the biconditional with the con-
ditional in the chapter 7 exercises, later tend to have
difficulties in Chapter 8 on the topic of It is sug-
gested that you pay particular attention to

The Grade Grinder can identify sequences of attempts by
a single student to solve an exercise or sequence of exer-
cises. Hence a further extension of the Grade Grinder would
allow students to inspect the system’s model of their learn-
ing history in order to encourage metacognitive processes
such as reflection and self-explanation. We may also be able
to provide students with a facility by which they can com-
pare their own error profiles to the aggregated profiles of
their peers. This approach would combine approaches from
research on inspectable (individual) student models (Bull,
Pain, and Brna 1995; Zapata-Rivera and Greer 2004) with
modelling the performance of groups of students (Jameson,
Baldes, and Kleinbauer 2003; Suebnukarn and Haddawy
2004).

Deployment Experience

The Grade Grinder has been in continuous operation for nine
years, and has been used by more than 38,000 students at
over a hundred institutions in at least a dozen countries.

In order to protect against network service outages, the
Grade Grinder was designed from day one to employ redun-
dant servers. There are currently two, located at Stanford
University and the University of Chicago. Data concerning
the submissions received are consolidated to a central server
which is used for delivery of web-based services.

The adoption of email for the delivery of grade reports
has the advantage of simplicity, but email protocols do not
provide guaranteed timely delivery, or timely notification of
delivery failure. In addition email delivery has increasingly
provided some challenges as Internet service providers strive
to meet their users’ demands for spam blacklists. Addition-
ally, hyperactive spam filters can also result in apparent non-
delivery of grade reports.

Our decision to implement desktop applications for the
students to complete their work (as opposed to a web-based
environment, for example) has significant consequences.
We support our applications on the Macintosh, Windows and
Linux platforms. We adopted the Java programming lan-
guage for implementation, which is advertised as a “write-
once, run-anywhere” technology. Even so we have had to
deal with issues concerning the user experience on all plat-
forms, continual upgrading of the underlying operating sys-
tems, and the underlying Java virtual machines. Significant
resources are required to implement and maintain desktop
applications to run on multiple platforms and locales.

Generalisation to Other Domains

The Grade Grinder was designed to provide assessment to
introductory undergraduate logic students. A large fraction
of the implementation effort has been focussed on the gen-
eral infrastructure needed to provide this service, and a rel-
atively small portion of the Grade Grinder code base is con-
cerned with the specific subject matter. We believe that the
Grade Grinder architecture supports easy extension to pro-
vide assessment services for other education domains. The
main problems in developing such an extension are the spec-
ification of the exercises to be answered by the students, and
the specification of the form of answers to these exercises.

In the current situation, the first of these problems is
solved by configuring the Grade Grinder to assess those ex-
ercises that appear in our own textbooks. We have taken
steps to permit the addition of instructor-designed exercises
to the Grade Grinder database, and expect to field a version
of the system that permits this fairly soon.

The second of these problems is solved by requiring that
the students use our desktop software to solve the exer-
cises, and to submit the resulting saved files. The Grade
Grinder can be extended to open files in any well-specified
file-format, but the structure of the information within the
files must be understandable as a solution to some problem.

In the simplest example, the Grade Grinder might be used
to assess essays written by students. In this case the submit-
ted files could be constructed in plain or rich text formats,

for example. The challenge would be the provision of algo-
rithms to assess the quality of the solution; this is already a
focus of activity elsewhere, for example see (Kakkonen et
al. 2005). At the other extreme, the Grade Grinder might be
extended to open files constructed by applications like the
Geometer’s Sketchpad or Mathematica. Assessment might
then be simplified by the highly structured form of the input,
although many of the capabilities of the desktop applications
may need to be duplicated in the Grade Grinder.

The International Dimension

The standard process for internationalization involves local-
izing the application at runtime to the locale of the desktop
on which the application is being run. The difficulty with in-
ternationalizing server software is that the locale of the sub-
mitting student must be used to localize their grade report.

Another internationalization issue applies specifically to
the domain of logic education, since the understanding of
how to translate natural language sentences into formal lan-
guage is dependent on the natural language that serves as
the source language. Language, Proof and Logic has itself
been translated into both German and Japanese. In the case
of the Japanese translation, the exercise sentences appear in
both English and (parenthetically) Japanese. On the other
hand, the German translator opted to translate the exercises
entire. In neither case has the desktop software or the Grade
Grinder been localized, in particular the target language of
first-order logic uses the atom Small(a) to indicate that a is
the name of a small block, even if the exercise contains the
corresponding German term “klein”. The translators for the
proposed Czech translation of Language, Proof and Logic
believe that localizing the software for their users is critical
to the success of their translation, and they plan addition-
ally to localize the software. This will have the effect of
changing the target logical language, and making the deter-
mination of whether an answer is correct dependent on the
locale of the user.

Conclusion

To achieve the accessibility and utility required in the Inter-
net classroom, it is almost certainly the case that automatic
assessment mechanisms will be required. Although the ex-
act nature of these will depend on the specific domain of
assessment, the specific mechanisms will also need a more
general infrastructure for managing the automated assess-
ment process. In this paper we have described the Grade
Grinder, a tried-and-tested solution to this problem that has
been used for over eight years; we believe this same model
can be extended straightforwardly to other educational do-
mains.

We have also drawn attention here to the scope that such
mechanisms provide for data gathering, whose analysis can
feed back into both the development of exercises and other
teaching materials, and into the ongoing improvement of the
assessment tools themselves.

References

Barker-Plummer, D.; Cox, R.; Dale, R.; and Etchemendy,
J. 2008. An empirical study of errors in translating natu-
ral language into logic. In Proceedings of the 30th Annual
Cognitive Science Society Conference. To be held in Wash-
ington, DC, July.

Barwise, J., and Etchemendy, J. 1998. Computers, visu-
alization and the nature of reasoning. In Bynum, T., and
Moor, J. H., eds., The Digital Phoenix: How Computers
are Changing Philosophy. Blackwell. 93-116.

Barwise, J.; Etchemendy, J.; Allwein, G.; Barker-Plummer,
D.; and Liu, A. 1999. Language, Proof and Logic. CSLI
Publications and University of Chicago Press.

Bull, S.; Pain, H.; and Brna, P. 1995. Mr collins: Student
modelling in intelligent computer assisted language learn-
ing. Instructional Science 23:65-87.

Cox, R.; Dale, R.; Etchemendy, J.; and Barker-Plummer,
D. 2008. Graphical revelations: Comparing students’
translation errors in graphics and logic. In Diagrams 2008,
Fifth International Conference on the Theory and Appli-
cation of Diagrams. To be held in Herrsching, Germany,
September 2008.

Grawemeyer, B., and Cox, R. 2005. Developing a bayes-
net based student model for an external representation se-
lection tutor. In Looi, C.-K.; McCalla, G.; Bredeweg, B.;
and Breuker, J., eds., Artificial Intelligence in Education:
Supporting Learning through Intelligent and Socially In-
formed Technology. Frontiers in Artificial Intelligence and
Applications, volume 125. IOS Press. 810-812.

Jameson, A.; Baldes, S.; and Kleinbauer, T. 2003. Gener-
ative models of group members as support for group col-
laboration. In Gaudioso, E., ed., Workshop on User and
Group Models for Web-based Adaptive Collaborative En-
vironments, Proceedings of the Ninth International Confer-
ence on User Modeling, 114.

Kakkonen, T.; Myller, N.; Timonen, J.; and Sutinen, E.
2005. Automatic essay grading with probabilistic latent
semantic analysis. In Proceedings of the Second Workshop
on Building Educational Applications Using NLP, 29-36.
Ann Arbor, Michigan: Association for Computational Lin-
guistics.

Koedinger, K., and Anderson, J. 1999. Intelligent tutor-
ing goes to school in the big city. International Journal of
Artificial Intelligence in Education 8:30-43.

Ridgway, J.; McCusker, S.; and Pead, D. 2004. Literature
review of e-assessment. Bristol: Futurelab.

Suebnukarn, S., and Haddawy, P. 2004. A collaborative in-
telligent tutoring system for medical problem-based learn-
ing. In Nunes, N., and Rich, C., eds., Proceedings of the
Ninth International Conference on Intelligent User Inter-
face., 1421.

Zapata-Rivera, J.-D., and Greer, J. 2004. Interacting with
inspectable bayesian student models. International Journal
of Artificial Intelligence in Education 14:1-37.

