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This paper has two objectives. The first is to develop the 
theory of bicategories enriched in a monoidal bicategory—
categorifying the classical theory of categories enriched 
in a monoidal category—up to a description of the free 
cocompletion of an enriched bicategory under a class of 
weighted bicolimits. The second objective is to describe a 
universal property of the process assigning to a monoidal 
category V the equipment of V-enriched categories, functors, 
transformations, and modules; we do so by considering, more 
generally, the assignation sending an equipment C to the 
equipment of C-enriched categories, functors, transformations, 
and modules, and exhibiting this as the free cocompletion of 
a certain kind of enriched bicategory under a certain class of 
weighted bicolimits.
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1. Introduction

The classical theory of categories enriched in a monoidal category [18] has many 
applications throughout mathematics. The more general notion of a category enriched 
in a bicategory is less well-known, but it allows one to capture also internal categories 
and indexed categories through enrichment, and has been used in the study of sheaves 
and stacks [38,3,36]. More generally still, we can enrich categories in a double category 
or a proarrow equipment [39,26]; the advantage of this over bicategory-enrichment is a 
better notion of enriched functor (see [31,9] for some examples).

In this paper we do two things:

(1) We categorify the theory of enriched categories to a theory of bicategories enriched 
in a monoidal bicategory, or more generally in a tricategory.

(2) We show that the construction “C �→ categories enriched in C”, for a bicategory or 
equipment C, has a universal property.

While these objectives are perhaps seemingly unrelated, in fact the former is necessary 
for the latter: the universal property of enriched categories is expressed as a free cocom-
pletion of a certain kind of enriched bicategory. This can be regarded as an instance of 
what Baez and Dolan [1] term the microcosm principle: the proper context in which to 
consider the theory of enriched categories is a categorified version of itself.

We now discuss (1) and (2) separately in somewhat more detail, beginning with (1).
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1.1. Enriched bicategories

Recall that if V is a monoidal category, then a V-enriched category (or V-category) 
C comprises a collection of objects; for every pair of objects, a hom-object C(x, y) ∈ V; 
and morphisms C(y, z) ⊗ C(x, y) → C(x, z) and I → C(x, x) giving composition and 
identities. The associativity and unitality of composition in C are expressed through 
the commutativity of certain familiar diagrams in V. By taking V to be Set, k-Vect, 
SSet, or DG-R-Mod, for example, we recapture the notions of (locally small) category, 
k-linear category, simplicial category, and dg-category, respectively.

Certain kinds of higher-categorical structures can also be described using en-
riched categories: thus (locally small) 2-categories are Cat-categories, while semi-strict 
3-categories—to which every tricategory is equivalent—are precisely Gray-categories, 
where as in [13], Gray is the category of 2-categories equipped with the Gray tensor 
product. However, Bénabou’s bicategories [2] cannot be described in this manner, since 
composition in an enriched category is always strictly associative and unital, whereas 
that in a bicategory is associative and unital only up to coherent isomorphism.

This last observation suggests the existence of a more general theory of enrichment, 
which stands in the same relation to the notion of bicategory as does the theory of 
V-categories to the notion of ordinary category. An early development of such a theory 
was given by Bozapalidès in a series of papers deriving from his Ph.D. thesis [6]. However, 
at the time of his writing, the most appropriate kind of base V over which such a 
bicategory should be enriched had not yet been developed. This was achieved in [13]: 
a monoidal bicategory is a bicategory equipped with a tensor product ⊗ that is associative 
and unital only up to equivalence, together with higher cell data witnessing the coherence 
of these equivalences. The first steps in the theory of bicategories enriched in a monoidal 
bicategory V were given in the two theses [8] and [20]. A V-enriched bicategory involves, 
as before, a collection of objects, a collection of hom-objects from V, and composition 
and identity 1-cells, but unlike before, the diagrams expressing the associativity and 
unitality of composition are no longer required to commute on the nose, but only up to 
coherent invertible 2-cells of V.

For example, taking V to be the cartesian monoidal bicategory Cat, we recapture the 
notion of (locally small) bicategory. Less trivially, we may consider various 2-dimensional 
analogues of the notion of CMon- or Ab-enriched category. For example, we can con-
sider, as in [20], bicategories each of whose hom-categories admits finite coproducts 
preserved by composition with 1-cells on either side. These are precisely V-enriched bi-
categories when V is taken to be the bicategory of categories with finite coproducts and 
finite-coproduct-preserving functors, under the tensor product that classifies functors 
preserving finite coproducts in each variable separately. Another possible generalisation 
involves bicategories each of whose hom-categories is a symmetric 2-group—a compact 
closed symmetric monoidal groupoid—and each of whose whiskering functors is coher-
ently monoidal. These are V-enriched bicategories for V the monoidal bicategory of 
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symmetric 2-groups, as defined in [10], for example. We shall see many more examples 
of enriched bicategories throughout this paper.

As we have said, the very basic definitions in the theory of enriched bicategories 
(amounting to most of our Section 3 and some of Section 4) were given in [8] and [20]. 
However, for the application of the theory that constitutes the second main objective 
of this article, we will need somewhat more than this: we must define and characterise 
the free cocompletion of an enriched bicategory under a class of colimits. Doing so will 
involve, along the way, developing a theory of modules (a.k.a. profunctors or distributors) 
between enriched bicategories, including a construction of the tensor product and internal 
hom of such; appropriate versions of the Yoneda lemma; and some results concerning 
iterated colimits and left Kan extensions.

1.2. Categories as monads

We now turn to a discussion of the second main objective of this paper, which is to 
use the theory of enriched bicategories to exhibit a universal property of the assignation 
“C �→ categories enriched in C”, for a bicategory or equipment C. The universal property 
that we will present is the culmination of a long sequence of advances by many people. 
It begins with Bénabou [2], who observed that small categories can be identified with 
monads in the bicategory of spans of sets.

Recall that a monad in a bicategory B consists of an object A ∈ B, a morphism 
t: A → A, and 2-cells tt ⇒ t and 1A ⇒ t satisfying the usual associativity and unitality 
laws. In the bicategory Cat, this is a monad in the ordinary sense; but in the bicategory 
Span, a monad consists of a set A0, a span A0 ← A1 → A0, and functions A1×A0 A1 →
A1 and A0 → A1, satisfying axioms that state precisely that it is a small category. More 
generally, if E is a category with pullbacks, then monads in Span(E) are categories 
internal to E.

The notion of monad in a bicategory is nice and general and has a good formal 
theory [32]. A monad in B is equivalently a lax functor 1 → B, and the lax limit and lax 
colimit of this functor give abstract versions of the classical Eilenberg–Moore and Kleisli 
categories, referred to as Eilenberg–Moore objects and Kleisli objects respectively. Thus, 
it is pleasing to see categories themselves arise as instances of monads—or it would be, 
if the identification did not break down at higher levels.

There is an obvious notion of lax morphism between monads (A, t) and (B, s) in a 
bicategory, consisting of a morphism f : A → B and a 2-cell sf ⇒ ft satisfying some 
axioms. These are the lax transformations between lax functors 1 → B, and induce mor-
phisms between Eilenberg–Moore objects. Dually we have colax morphisms, involving a 
2-cell ft ⇒ sf ; these can be identified with colax transformations, and induce morphisms 
of Kleisli objects.

However, neither sort of morphism of monads in Span gives what we expect as a 
morphism of categories. A colax morphism (the more likely-looking one) from A1 ⇒ A0
to B1 ⇒ B0 involves a span A0 ← F0 → B0 and a function between pullbacks:
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A0 A1 A0

B0 B1 B0.

F0 F0

•

•
(1.1)

If the first leg F0 → A0 of the span is an identity, then these data reduce to functions 
A0 → B0 and A1 → B1, which the axioms then assert to be a functor. However, the gen-
eral case does not correspond to any well-known notion of morphism between categories 
(but see Example 16.8 and Remark 16.27).

The situation is even worse for 2-cells. A monad 2-cell (which can be identified with 
a modification) consists of a 2-cell f ⇒ g satisfying some axioms. But if f and g are 
functors, regarded as particular colax monad morphisms in Span, then this is a function 
F0 → G0 commuting with the identities F0 = A0 and G0 = A0, hence itself merely an 
identity. Thus we do not see the natural transformations at all.

This latter problem was rectified by Lack and Street [24] by considering the free cocom-
pletion of a bicategory C under Kleisli objects, KL(C). (In fact, Lack and Street define 
KL(C) only for C a 2-category; but the description they give adapts without trouble to 
the bicategorical case.) Up to equivalence, the objects of KL(C) can be identified with 
monads in C, and it turns out that its morphisms are simply colax monad morphisms. 
However, a 2-cell f ⇒ g in KL(C) consists instead of a 2-cell f ⇒ sg in C satisfying 
certain axioms. In Span, this datum is a function:

A0

F0G0

B0 B0.B1

•

If F and G are functors, so that F0 → A0 and G0 → A0 are identities, then this is simply 
a function A0 → B1, and the axioms assert indeed that this is a natural transformation. 
Thus, the 2-category Cat is a locally full sub-2-category of KL(Span).

There is still the problem of identifying the functors. Towards this end, note that 
there is a functor Set → Span that is the identity on objects and that sends a function 
A → B to the span 1A: A ← A → B: f . This functor is moreover locally fully faithful, 
and each span of the form (1A, f) has a right adjoint in Span, namely (f, 1A). Thus, 
Set → Span is a proarrow equipment in the sense of Wood [39].

This at least gives us an abstract version of the construction: starting from a proar-
row equipment K → M, we can form KL(M), and then its locally full sub-bicategory 
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KLK(M) on the morphisms whose underlying M-morphism lies in K. It also suggests 
an improvement we might hope for, since Cat is itself part of a proarrow equipment 
Cat → Mod. Here Mod is the bicategory whose objects are small categories and whose 
morphisms are modules. Indeed, this is the archetypical proarrow equipment that Wood 
sought to generalise.

Thus, we might hope for a general construction on proarrow equipments that when ap-
plied to Set → Span produces Cat → Mod. Such a construction is easy to write down: 
from K → M we produce KLK(M) → Mod1(M), where the objects of Mod1(M) are 
monads as before, but its morphisms are a suitable notion of module. (The subscript 1
will be explained below.)

Specifically, a module from a monad (A, t) to (B, s) in a bicategory is a morphism 
h: A → B together with 2-cells ht ⇒ h and sh ⇒ h giving a compatible right action 
of t and left action of s on h. In Span, these are precisely the usual sort of bimodules 
between categories. If we assume that M has local reflexive coequalisers—that is, its 
hom-categories have reflexive coequalisers that are preserved by composition in each 
variable—then we can compose modules with a “tensor product”, obtaining a bicategory 
Mod1(M) and a proarrow equipment KLK(M) → Mod1(M).

The construction of Mod1(M) from M was studied abstractly by Street [35]
and Carboni, Kasangian, and Walters [7]. They showed that it is idempotent:
Mod1(Mod1(M)) � Mod1(M). Moreover, a bicategory M is of the form Mod1(C)
for some C (which can then be taken to be M itself) if and only if it has local reflexive 
coequalisers and Kleisli objects. These two facts suggest that Mod1(M) is also some 
kind of completion of M under Kleisli objects, but in a different sense than KL(M).

In this paper we unify these various threads, by observing that:

(a) the property of having local reflexive coequalisers, and
(b) the structure enhancing a bicategory to a proarrow equipment

can both be described as enrichments of a bicategory in particular monoidal bicategories. 
For (a), this is much as in Section 1.1 above: we enrich in the monoidal bicategory Colim1
of categories with reflexive coequalisers, with a tensor product that represents functors 
preserving reflexive coequalisers in each variable (again, the naming of this 2-category 
and the subscript 1 will be explained below).

We obtain (b) by enriching in a monoidal bicategory F whose objects are pairs of 
categories together with a fully faithful functor between them. Each hom-object of an 
F-bicategory C is such a functor Cτ (x, y) → Cλ(x, y), and the domains and codomains 
of these functors fit together into two bicategories Cτ and Cλ with a locally fully faith-
ful, identity-on-objects functor between them. This generalises constructions given for 
1-categories by Power [29], and for 2-categories by Lack and Shulman [23].2

2 In fact, proarrow equipments in the sense of [39] are rather special kinds of F-bicategories: those for which 
every 1-cell in the image of the functor Cτ → Cλ is a map: that is, admits a right adjoint. Our construction 
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Finally, we can combine both of these structures, by enriching in a monoidal bicategory 
whose objects are fully faithful functors whose codomains have reflexive coequalisers; call 
this bicategory F1. Then we will prove:

1.3. Theorem. For any proarrow equipment K → M, where M has local reflexive co-
equalisers, the proarrow equipment KLK(M) → Mod1(M) is its free cocompletion, as 
an F1-enriched bicategory, under a class of F1-enriched colimits called tight Kleisli ob-
jects.

In particular, Cat → Mod is obtained by freely cocompleting Set → Span in this 
manner. We also have the following simpler version:

1.4. Theorem. For any bicategory M with local reflexive coequalisers, the bicategory 
Mod1(M) is its free cocompletion under Kleisli objects as a Colim1-enriched bicat-
egory. Moreover, Kleisli objects are an absolute colimit for Colim1.

The latter fact explains the idempotence of Mod1, since any cocompletion under an 
absolute type of colimit (e.g. splitting of idempotents, or biproducts in additive cate-
gories) is idempotent. Tight Kleisli objects, however, are not absolute for F1.

Finally, everything we have said so far has a “many-object” version. Already in [2], 
Bénabou considered what he called polyads, and which later authors have come to call 
categories enriched in a bicategory.3 A category A enriched in a bicategory M has a set 
of objects x, y, . . . , where to each object x is assigned some 0-cell εx in M (called its 
extent), together with 1-cells A(x, y): εy → εx, and composition and unit 2-cells satisfying 
the usual axioms.

If A has exactly one object, then it is simply a monad in M. On the other hand, if M
is a monoidal category, regarded as a one-object bicategory, then A reduces to the usual 
sort of category enriched in a monoidal category (hence the name).

One can directly define functors, transformations, and modules between categories 
enriched in a bicategory. However, the notion of functors considered by most authors is 
too limited, in that it requires them to preserve extents strictly. In some cases, this can 
be circumvented with weak completeness conditions on the enriched categories, as in the 
situations of [38,3,31].

However, a better solution is to consider instead categories enriched in a proarrow 
equipment K → M (more generally, an F-bicategory), where the action of functors on 
objects is mediated by morphisms in K. When M is a monoidal category, we can take 

actually operates on the more general F-bicategories, but has the property of sending proarrow equipments 
to proarrow equipments; see Lemma 16.21. In the body of this paper, we shall use “equipment” to mean 
“F-bicategory”, and “map equipment” to mean “proarrow equipment” in the sense of Wood.
3 These should not be confused with the bicategories enriched in a monoidal bicategory that we dis-

cussed in Section 1.1. Categories enriched in a bicategory are still a 1-categorical notion; the corresponding 
two-dimensional notion is that of a bicategory enriched in a tricategory, which has as a special case the 
bicategories enriched in a monoidal bicategory discussed in this paper.
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K to contain only the identity, so that this still reduces to the usual notion of functor in 
that case. But in more general situations, it yields a more appropriate notion of functor; 
see [31,9] for recent examples.

If M is locally cocomplete, we can compose modules between small M-enriched cate-
gories. Thus, we have a bicategory Mod∞(M), and a proarrow equipment CatK(M) →
Mod∞(M). The above two theorems generalise immediately. Let Colim∞ denote the 
2-category of cocomplete categories, with an appropriate tensor product, and F∞ the 
2-category of fully faithful functors with cocomplete codomain. The generalisation of 
Kleisli objects from monads to enriched categories is called a collage.

1.5. Theorem. For any proarrow equipment K → M, where M is locally cocom-
plete, the proarrow equipment CatK(M) → Mod∞(M) is its free cocompletion, as an 
F∞-enriched bicategory, under a class of F∞-enriched colimits called tight collages.

1.6. Theorem. For any locally cocomplete bicategory M, the bicategory Mod∞(M) is its 
free cocompletion under collages, as a Colim∞-enriched bicategory. Moreover, collages 
are an absolute colimit for Colim∞.

(The universal property described in the second of these theorems was exhibited 
for locally partially ordered bicategories—ones whose every hom-category is a partial 
order—in [37, Section 8].)

In fact, the 1-case and the ∞-case are merely opposite ends of a spectrum; interme-
diate cases are parametrised by regular cardinals κ, and exhibit the totality of κ-small 
enriched categories, functors and modules as a free cocompletion in the world of “lo-
cally κ-cocomplete bicategories”—those enriched over the monoidal bicategory Colimκ

of κ-cocomplete categories and κ-cocontinuous functors.
These theorems draw together the various descriptions of categories in a pleasing 

and abstractly well-behaved way. They also emphasise the importance of considering 
categories enriched in equipments, rather than merely in bicategories, especially in order 
to obtain the right notion of functor. One potential application is to a theory of exact 
completion for 2-categories, since the locally posetal case of the above theorems was a 
basic ingredient in the general treatment of exact completion for 1-sites in [30].

1.7. Overview of the paper

We conclude this introduction with a brief overview of the contents of this paper. 
The first part, Sections 2–14, develops the theory of enriched bicategories up to the free 
cocompletion of an enriched bicategory under a class of colimits. The second part, Sec-
tions 15 and 16, applies this theory to prove the universal property of enriched categories. 
Although the first part is longer and more technically involved, there are no real sur-
prises; so the reader primarily interested in the universal property of enriched categories 
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could perfectly well skip directly to the second part, referring back to definitions and 
results from the first as necessary.

Section 2 establishes notation and conventions and recalls some preliminary material. 
Section 3 defines bicategories enriched in a monoidal bicategory V and the various kinds 
of higher cell between them, while Section 4 describes the compositional structure of 
these cells, showing that they form a tricategory V-Bicat. In Section 5, we define two-
sided modules between V-bicategories, and as a special case, the one-sided modules that 
correspond to covariant or contravariant presheaves over a V-bicategory. In Section 6
we define, in the V-bicategorical world, the tensor product of a left A-, right B-module 
with a left B-, right C-module, while in Section 7 we discuss the corresponding “internal 
hom” of V-modules. All of this generalises the corresponding constructions on bimodules 
(a.k.a. profunctors) between ordinary categories. We stop short of constructing the tri-
category (and the resulting “triequipment”) of V-categories and modules, but this would 
be the natural next step.

In Section 8, we state and prove a Yoneda lemma for V-bicategories, and use it to 
prove some useful auxiliary results; then in Section 9, we show that (under suitable size 
restrictions), the right modules over a V-bicategory C themselves form a V-bicategory 
MC equipped with a fully faithful embedding C → MC. Then in Section 10, we define 
weighted colimits in V-bicategories, discuss their functoriality, and consider the closely 
related notion of left Kan extension, while in Section 11, we show that every V-bicategory 
of the form MC is cocomplete and prove some results related to the taking of iterated 
colimits. We draw together these strands in Section 12, by showing that the free cocom-
pletion of a V-bicategory C under a class of colimits may be constructed by closing C in 
MC under colimits from that class.

Sections 13 and 14 gather some further results relevant to the theory of enriched bi-
categories. Section 13 considers the “change of base” operation V-Bicat → W-Bicat
induced by a monoidal functor L: V → W. And in Section 14, we describe two ways of 
constructing new monoidal bicategories from old, via comma bicategories and via reflec-
tive sub-bicategories, and consider how these interact with the corresponding notions of 
enriched bicategory.

Finally, in Sections 15 and 16, we apply the theory developed throughout the rest of 
the paper to prove the universal property of enriched categories. In Section 15, we recall 
the definition of a category enriched in a bicategory, and of the modules between them; 
we define collages—the kinds of colimit relevant for our free cocompletion results; we 
construct the monoidal bicategories Colim1 and Colim∞; and we prove Theorems 1.4
and 1.6. In fact, as anticipated above, we subsume these both into a more general state-
ment, parametrised by a regular cardinal κ. Finally, in Section 16, we define equipments, 
and describe the equipment of categories, functors and modules enriched in an equip-
ment. We then define tight collages, the relevant kind of colimit for our free cocompletion 
result; construct the monoidal bicategories F1 and F∞; and prove Theorems 1.3 and 1.5, 
again, by way of a more general statement parametric in a regular cardinal κ.
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2. Preliminaries

We now begin our development of the theory of bicategories enriched over a monoidal 
bicategory. As noted in the introduction, some very basic aspects of this theory were de-
veloped in [8,20], but we will need to go significantly further; and since the two references 
just cited are not widely available, we have arranged to make our account self-contained. 
The material we describe is, of course, a two-dimensional generalisation of enriched 
category theory in the sense of [18]; however, it is not this that we will follow in our 
development, but rather [36]. The key point is that we will not assume any kind of sym-
metry in the monoidal bicategory over which we are enriching. Although this restricts 
the range of constructions available to us—we cannot form the opposite of an enriched 
bicategory, or the tensor product or internal hom of two enriched bicategories—we still 
have enough flexibility to define enriched presheaf categories, limits and colimits, and the 
free completion under a class of weights. Working in the non-symmetric setting means 
that the theory we develop generalises without difficulty to the case of bicategories en-
riched in a tricategory; for the sake of simplicity, we have not given that generalisation 
here, but the reader should be able to make the relevant adaptations without fuss.

We will assume that the reader is familiar with the basic theory of bicategories, as set 
out in [34], for example. We refer to homomorphisms of bicategories simply as functors, 
and refer to pseudonatural transformations simply as transformations. Throughout this 
article, V will be a monoidal bicategory in the sense of [13]; our notational conventions 
will be those of [15] which for the sake of self-containedness we now spell out. We write 
⊗: V × V → V and I: 1 → V for the binary and nullary tensor product functors, and 
write I also for the unit object picked out by the nullary tensor. The associativity and 
unit equivalence transformations of V we write as

a:⊗ ◦ (⊗× 1) ⇒ ⊗ ◦ (1 ×⊗) l:⊗ ◦ (I × 1) ⇒ id r:⊗ ◦ (1 × I) ⇒ id,

thus with 1-cell components aABC : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C), lA: I ⊗ A → A and 
rA: A ⊗ I → A; and we write a�, l� and r� for specified choices of adjoint pseudoinverse. 
Finally, we write π, λ, ρ and ν for the invertible modifications with components

where for conciseness we write the tensor product ⊗ as mere juxtaposition (note that 
our ν was called μ in [13] and [15]).

We will generally use string diagrams rather than pasting diagrams to define com-
pound 2-cells in V, with objects represented by regions, 1-cells by strings, and generating 
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2-cells by vertices. To avoid clutter, we will omit the symbol ⊗ in string diagrams, and 
will not explicitly label regions with objects of V; the appropriate labels can always 
be recovered from the 1-cell labels on strings. For example, with these conventions the 
coherence 2-cells displayed above, which will always be notated explicitly in our string 
diagrams, are given by:

a1

a

1a

a

a
π

l1
a

l
λ

1r�
r

�

a
ρ and a

r
�1

1l

ν .

The following additional conventions will prove useful. First, if ξ: A → B is a 1-cell 
in V with specified adjoint pseudoinverse ξ�: B → A, then we depict the unit and counit 
2-cells of the adjoint equivalence in string diagrams as simple cups and caps:

ξ

ξ� ξ

ξ�
.

Note that, in this situation, ξ� also has specified adjoint pseudoinverse ξ, so that we may 
without ambiguity exchange the position of ξ and ξ� in these cups and caps. Our next 
convention concerns the pseudonaturality constraint 2-cells of a, l and r:

We will draw these and their inverses as string crossings, with the convention that the 
string labelled by a, l or r should remain uppermost; so afgh and a−1

fgh are drawn as:

a

a(fg)h

f(gh)
and

a

a (fg)h

f(gh)
,

and correspondingly for l and r. We also allow ourselves to apply this convention to the 
pseudonaturality constraints of the pseudoinverse transformations a�, l� and r�.

Our final convention concerns the pseudofunctoriality of ⊗. Given 1-cells f : A → A′

and g: B → B′ in V, this pseudofunctoriality gives canonical invertible 2-cells

We notate instances of these two 2-cells and their inverses by string splittings and join-
ings:
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fg

1g

f1
fg

f1

1g
fg

f1

1g
fg

1g

f1
.

To avoid clutter, where joinings and splittings occur to the extreme left or right of a 
diagram, we may choose to omit them; this means that the displayed 2-cell will have 
an invalid domain or codomain 1-cell, but no confusion should arise, since the correct 
diagram may be readily constructed by reappending the omitted joinings or splittings. 
Furthermore, we notate instances of the composite 2-cell (f⊗1) ◦(1 ⊗g) ⇒ (1 ⊗g) ◦(f⊗1)
and its inverse again by string crossings, where we now decide (arbitrarily) to keep the 
string labelled by f ⊗ 1 uppermost, as in:

f1

f11g

1g
and

f1

f1 1g

1g
.

As a first application of our diagrammatic conventions, we use them to prove the 
following lemma, which categorifies the well-known result that, in a monoidal category, 
we have λI = ρI : I ⊗ I → I.

2.1. Lemma. There is an invertible 2-cell θ: lI ⇒ rI : I ⊗ I → I in V.

Proof. First, for any A ∈ V there are invertible 2-cells

r�A⊗I ⇒ r�A ⊗ 1:A⊗ I → (A⊗ I) ⊗ I and lI⊗A ⇒ 1 ⊗ lA: I ⊗ (I ⊗A) → I ⊗A

given by the string diagrams

r
�

r
�

r

r
�1r

�

and l
�

l

l
�

l

1l

which given as pastings are the following composites of coherence 2-cells:

Taking A = I, we may now incorporate these two 2-cells into the following more complex 
string diagram specifying the desired θ:
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a

l

l
�

l

1l

l1

l
r

�1

r

r
�

r

λ ν

.

�

3. V-bicategories and their morphisms

We now describe the notion of bicategory enriched in a monoidal bicategory V, 
together with the various kinds of higher cells between these: enriched functors, transfor-
mations and modifications, and additionally the enriched analogue of the icons of [21]. We 
also describe the construction assigning to every V-enriched bicategory its underlying or-
dinary bicategory, and correspondingly for the cells between them; ordinary bicategories 
in fact arise as V-enriched bicategories on taking V = Cat.

3.1. V-bicategories

A V-bicategory B, or bicategory enriched in V, is given by:

• A set of objects obB;
• For each x, y ∈ B a hom-object B(x, y) ∈ V;
• For each x ∈ B a morphism jx: I → B(x, x) in V;
• For each x, y, z ∈ B a morphism mxyz: B(y, z) ⊗ B(x, y) → B(x, z) in V;
• For each x, y ∈ B, invertible 2-cells

• For each w, x, y, z ∈ B, an invertible 2-cell

subject to the axioms that, for each x, y, z ∈ B, we have
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r
�1

(1j)1

1(j1)

a

1m

m

1l
m1

m

ν

1σ
α

=

r
�1

(1j)1

m1

m

τ1

in V(B(y, z) ⊗ B(x, y), B(x, z)), and that for each v, w, x, y, z ∈ B, we have

(m1)1

m1

a1

m1

m

m

1a 1(1m)

1m

a

a

1m

a(1m)1

1(m1)

π

α1

α
1α

=
m1

m

m

1m

m

a

1m

1m 1(1m)

a

(m1)1

m1

α α

in V( ((B(y, z) ⊗ B(x, y)) ⊗ B(w, x)) ⊗ B(v, w), B(v, z) ).

3.2. Example. The unit V-bicategory I has one object, 
, with I(
, 
) = I, j� = 1I , 
m��� = l, and with σ, τ , and α constructed from coherence cells for V (with τ involving θ).

3.3. Underlying bicategory

To any V-bicategory B we may associate an ordinary bicategory B0 with the same 
objects as B, and with hom-categories B0(x, y) = V(I, B(x, y)). The identity morphism 
at x ∈ B0 is jx ∈ V(I, B(x, x)), while composition is mediated by the functors:

V(I,B(y, z)) × V(I,B(x, y)) ⊗−−→ V(I ⊗ I,B(y, z) ⊗ B(x, y)) V(l�,m)−−−−−→ V(I,B(x, z)).

The left and right unit constraint 2-cells for B0 are constructed from σ and τ respectively, 
with the right constraint also involving θ; the associativity constraint 2-cells are built 
from α and λ.

3.4. Hom-functors

For any V-bicategory B and any x ∈ B, there is a functor B(x, –): B0 → V that on 
objects sends y to B(x, y), on 1-cells sends f : y → z to the composite

B(1, f) := B(x, y) l
�−→ I ⊗ B(x, y) f⊗1−−−→ B(y, z) ⊗ B(x, y) m−−→ B(x, z),

and on 2-cells sends γ: f ⇒ g to m ◦ (γ ⊗ 1) ◦ l�. The nullary and binary functoriality 
constraints for B(x, –) are built from σ and from α and λ, respectively. Similarly, we 
obtain for each y ∈ B a functor B(–, y): Bop

0 → V that sends x to B(x, y), sends g: w → x

to the composite
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B(g, 1) := B(y, x) r
�−−→ B(x, y) ⊗ I

1⊗g−−−→ B(x, y) ⊗ B(w, x) m−−→ B(w, y),

and sends a 2-cell γ to m ◦ (1 ⊗ γ) ◦ r�; its binary and nullary functoriality constraints 
built from τ and from α and ρ, respectively.

For any maps f : y → z and g: w → x in B0, there is an interchange isomorphism 
B(g, 1) ◦B(1, f) ⇒ B(1, f) ◦B(g, 1): B(x, y) → B(w, z) built from α and λ, and using these, 
we may assemble together the functors defined above into a functor B(–, –): Bop

0 ×B0 → V. 
With respect to this functor structure, the unit and composition maps jx: I → B(x, x)
and mxyz: B(y, z) ⊗ B(x, y) → B(x, z) now become pseudonatural in each variable, in 
that we have invertible 2-cells

(3.1)

satisfying coherence axioms. The 2-cells υ are built using σ and τ for B, together with 
two instances of θ; while those of the remaining three kinds are built from instances of 
α for B, together with ρ, ν and λ respectively.

3.5. V-functors

If B and C are V-bicategories, then a V-functor B → C is given by:

• A function F : obB → ob C;
• For each x, y ∈ B, a morphism Fxy: B(x, y) → C(Fx, Fy) in V;
• For all x ∈ B and for all x, y, z ∈ B, invertible 2-cells

subject to the axioms that for all x, y ∈ B, we have:

1j

m

rF1

F
τ

= 1j 1j

1j
F1

FF

1F m

F

r

1ι
μ

τ

m
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in V(B(x, y) ⊗ I, C(Fx, Fy)), and

j1

m

l1F

F
σ

= j1

m

j1

j1
1F

FF

F1 m

F

l

ι1
μ

σ

in V(I ⊗ B(x, y), C(Fx, Fy)), and that for all w, x, y, z ∈ B, we have

(FF )F (FF )1

m

m1
1F

1F

m1

F1
FF m

F

a

1m

m

μ1

μ

α

=
m

m1
1m

1F FF

a(FF )F

F (FF )
1(FF )

1m 1m

F1

m

1μ

α

m

Fμ

in V( (B(y, z) ⊗ B(x, y)) ⊗ B(w, x), C(Fw, Fz) ).
We call a V-functor F : B → C fully faithful if each Fxy is an equivalence in V.

3.6. Underlying ordinary functor

Given a V-functor F : B → C, there is an ordinary functor F0: B0 → C0 whose 
action on objects is that of F , and whose action on hom-categories is given by 
V(1, Fxy): V(I, B(x, y)) → V(I, C(Fx, Fy)). The nullary and binary functoriality con-
straints of F0 are obtained using ι and μ respectively. We may without ambiguity write 
the action of F0 on a 1-cell f or 2-cell α of B0 as Ff or Fα, respectively. The interaction 
of the underlying functor F0 of F with the hom-functors of Section 3.4 is expressed by 
the existence of invertible 2-cells

(3.2)

built from the binary constraint cells μ for F .

3.7. V-transformations

Let F, G: B → C be V-functors. A V-transformation γ: F ⇒ G is given by:

• For each x ∈ B, a morphism γx: Fx → Gx in C0;
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• For each x, y ∈ B, an invertible 2-cell

subject to the axioms that for all x ∈ B, we have

C(γ, 1)

j

G

j

F

C(1, γ)

ι

γ̄

=
C(γ, 1)

j

F

j

j

C(1, γ)

ι

υ

in V(I, C(Fx, Gx)), and that for all x, y, z ∈ B, we have

m

F

FFF1

G1

1F
1F

m

C(1, γ)

C(1, γ)1C(γ, 1)1

m

1C(1, γ)

m

1C(γ, 1)

GG 1G
1γ̄

α

γ̄1

α

μ =
GG

1C(γ, 1)

m
C(γ, 1)

m

m

G F

C(1, γ)α−1

μ

γ̄

in V( (B(y, z) ⊗ B(x, y)) ⊗ I, C(Fx, Gz) ). If in the preceding definition, we remove the 
requirement that γ̄ be invertible, we obtain a notion of lax V-transformation, while if we 
allow it to go in the other direction, we obtain oplax V-transformations. If necessary, we 
will call V-transformations pseudo to differentiate them from the lax and oplax variants.

If α: F ⇒ G is a pseudo, lax or oplax V-transformation, then we obtain a pseudo, lax 
or oplax transformation α0: F0 ⇒ G0 whose 1-cell components are those of α, and whose 
2-cell component at a map f : x → y of B0 is obtained by whiskering the 2-cell γ̄xy with 
f : I → B(x, y).

3.8. V-icons

Following [22,21], a V-icon is essentially an oplax V-transformation whose 1-cell com-
ponents γx are identities; as in the unenriched case, we can formulate an equivalent 
notion more simply. Namely, if F, G: B → C are V-functors that agree on objects, then a 
V-icon γ: F ⇒ G is given by a collection of 2-cells

γ̄xy:Fxy ⇒ Gxy:B(x, y) → C(Fx, Fy) = C(Gx,Gy)

in V for all x, y ∈ B, subject to the axioms that for all x ∈ B, the equality below on the 
left holds in V(I, C(Gx, Gx)), and that for all x, y, z ∈ B, the equality below on the right 
holds in V(B(y, z) ⊗ B(x, y), C(Gx, Gz)):
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j

G

j
ι =

j

F

j

G
ι

γ̄

and
m

GG

G

mFF

μ

γ̄γ̄ =
m

F

FF

m G
μ

γ̄

.

Given a V-icon γ: F ⇒ G, let γx be the identity morphism in C0(Fx, Gx) for each 
x ∈ B; now the morphisms C(γx, 1) and C(1, γx) are isomorphic to identities in V, and so 
there is a bijection between 2-cells C(1, γy) ◦Fxy ⇒ C(γx, 1) ◦Gxy and 2-cells Fxy ⇒ Gxy. 
Under this correspondence, the two V-transformation axioms correspond to the two 
V-icon axioms; and thus we have:

3.9. Proposition. There is a bijection between V-icons γ: F ⇒ G and oplax V-transfor-
mations γ: F ⇒ G whose 1-cell components are identities, under which invertible icons 
correspond to pseudo V-transformations.

3.10. V-modifications

If γ, δ: F ⇒ G are V-transformations, then a V-modification Γ: γ � δ comprises 2-cells 
Γx: γx ⇒ δx in C0 for each x ∈ B, subject to the axiom that for all x, y ∈ B, we have 
(C(1, Γy) ⊗ 1) ◦ γ̄xy = δ̄xy ◦ (C(Γx, 1) ⊗ 1).

Any V-modification Γ: α � β has an underlying ordinary modification Γ0: α0 � β0

with the same components as Γ.

4. The tricategory of V-bicategories

4.1. Local structure

For any V-bicategories B and C, we may define an (ordinary) bicategory V-Bicat(B, C)
whose objects, 1-cells and 2-cells are V-functors, V-transformations and V-modifications 
from B to C. The identity V-transformation 1F : F ⇒ F has 1-cell components (1F )x =
1Fx and 2-cell component (1F )xy coming from the nullary functoriality constraints of 
C(Fx, –) and of C(–, Fy). The composite of V-transformations γ: F ⇒ G and δ: G ⇒ H

has 1-cell components (δγ)x = δx ◦ γx, and 2-cell component (δγ)xy built from δ̄xy and 
γ̄xy together with the binary functoriality constraints of C(–, Hy) and C(Fx, –). The 
remaining data for this bicategory are obtained componentwise from the corresponding 
data in C0.

4.2. Composition of V-functors

Given V-functors F : A → B and G: B → C, we define the composite GF : A → C to 
have action on objects (GF )(X) = G(FX), action on homs (GF )xy = GFx,Fy ◦Fxy, and 
functoriality coherence 2-cells
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j
j

j

F

G

ι

ι and
(GF )(GF ) FF

m GG m

m

F

G
μ

μ

.

Now the assignation G �→ GF provides the action on objects of a “whiskering” func-
tor (–)F : V-Bicat(B, C) → V-Bicat(A, C) that on morphisms, sends γ: G ⇒ H to the 
V-transformation with 1-cell components (γF )x = γFx and 2-cell components obtained 
by whiskering those of γ with F and applying associativity constraints; and on 2-cells, 
sends Γ: γ � δ to the V-modification with components (ΓF )x = ΓFx. It is easy to see 
that (–)F in fact strictly preserves identities and composition.

On the other hand, the assignation F �→ GF is the action on objects of a func-
tor G(–): V-Bicat(A, B) → V-Bicat(A, C) that on 1-cells sends γ: F ⇒ K to the 
V-transformation with 1-cell components (Gγ)x = G(γx) and 2-cell components

K

G

C(Gγ, 1) G

B(γ, 1)

F

B(1, γ) G

C(1, Gγ)μ

γ̄

μ−1

;

and on 2-cells sends Γ: γ � δ to the V-modification with components (G ◦Γ)x = G(Γx). 
The functoriality constraint 2-cells of G(–) are obtained pointwise from those of G0: B0 →
C0. The operations just described give rise to a functor

∗:V-Bicat(B, C) × V-Bicat(A,B) → V-Bicat(A, C),

whose action on V-transformations γ: F ⇒ G: A → B and δ: H ⇒ K: B → C is given by 
δ ∗ γ := (Kγ) ◦ (δF ): HF ⇒ KG, and on V-modifications Γ: γ ⇒ δ and Δ: ε ⇒ ν by 
Δ ∗ Γ := (KΓ) ◦ (ΔF ). The functoriality constraints of ∗ are obtained from those of the 
left and right whiskering functors together with the coherent interchange V-modifications 
(Kγ) ◦ (δF ) � (δG) ◦ (Hγ): HF ⇒ KG whose component at x is given by whiskering 
δ̄Fx,Gx with γx: I → B(Fx, Gx).

For any V-bicategory B, there is an identity V-functor 1B: B → B that is the identity 
on objects, has action on homs (1B)xy = 1B(x,y), and functoriality 2-cells obtained from 
the unitality constraints of the bicategory V.

4.3. The tricategory V-Bicat

In order to make out of the structures defined above a tricategory V-Bicat, it remains 
only to describe the coherent constraint cells associated to composition along 0-cell 
boundaries. Given V-functors F : A → B, G: B → C and H: C → D, we observe that the 
composites (HG)F and (HG)F agree on objects, and differ on hom-objects only up to 
associativity constraints in the bicategory V; these constraints form the components of 
an invertible V-icon (HG)F ⇒ H(GF ). The V-transformations corresponding to these 
V-icons under Proposition 3.9 now provide the 1-cell components of the associativity 
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pseudonatural equivalence aABCD for V-Bicat; the corresponding 2-cell components are 
constructed from unit constraints in D0. Similarly, for any V-functor F : C → D, we have 
invertible V-icons F1C ⇒ F and 1DF ⇒ F giving rise to the unit constraints l and r for 
V-Bicat.

The remaining data needed to make V-Bicat into a tricategory are the invertible 
modifications π, λ, ρ and ν witnessing the satisfaction up to coherent isomorphism 
of the pentagon axiom and three unit axioms. The components of these modifica-
tions are V-modifications between V-transformations built from a, l and r; since these 
V-transformations have identity 1-cell components, the components of the required 
V-modifications are built from coherence constraints in the monoidal bicategory V. The 
coherence theorem for monoidal bicategories now ensures that the π, λ, ρ and ν so defined 
satisfy the tricategory axioms.

4.4. Remark. The tricategory structure of V-Bicat can be derived from a different 
kind of structure that captures more faithfully the constraint data involved in its 
compositions. Observe first that, since the associativity and unit constraints for com-
position of V-functors are given by invertible V-icons, we have a bicategory V-Bicat2 of 
V-bicategories, V-functors and V-icons (note that this bicategory will not be a 2-category 
unless V is too). V-Bicat2 captures the up-to-isomorphism associativity of V-functor 
composition, but does not contain the general V-transformations or the V-modifications. 
However, we may retain both of these by combining the structures of V-Bicat and 
V-Bicat2 into a locally cubical bicategory in the sense of [12]. A locally cubical bicategory 
is just a DblCat-bicategory, where DblCat is the monoidal 2-category of pseudo double 
categories, pseudo double functors, and vertical transformations in the sense of [14]; in 
our case, we obtain such a structure V-Bicat whose hom-pseudo double category from 
B to C has V-Bicat(B, C) as its horizontal bicategory, V-icons as its vertical maps, and 
as cells, cubical modifications

that consist of 2-cells Γx: αx ⇒ βx in C0 such that for all x, y ∈ B we have

F

C(1, α)

G

C(α, 1) C(1, β)

H

Γ

ᾱ

γ̄

=
K

C(β, 1)

H

C(1, β)C(α, 1)

G

Γ
β̄

δ̄

in V(B(x, y), C(Fx, Gy)). (In these two diagrams, we write Γ as an abbreviation for the 
2-cells C(Γ, 1) and C(1, Γ).)

For any invertible V-icon γ: F ⇒ G, we can find—using Proposition 3.9—a V-transfor-
mation γ̂: F ⇒ G and an invertible cubical modification
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This means that the locally cubical bicategory V-Bicat is locally fibrant in the sense 
of [12]; whence, by Theorem 24 of that paper, its “locally horizontal” part can be 
equipped with the structure of a tricategory. This is precisely the tricategory structure 
on V-Bicat described above.

4.5. The trihomomorphism (−)0

Taking underlying ordinary structures now yields a trifunctor (–)0: V-Bicat → Bicat; 
it is in fact a strict functor on hom-bicategories V-Bicat(B, C) → Bicat(B0, C0), and 
preserves binary and nullary composition of 0-cells up to an invertible icon; in fact, we 
may see (–)0 as having been induced from a morphism of locally cubical bicategories 
V-Bicat → Bicat. We will see in Example 13.3 below that this trifunctor is an instance 
of change of base, here along the monoidal functor V(I, –): V → Cat. Alternatively, we 
may obtain it as the hom-functor V-Bicat(I, –), where I is the unit V-bicategory of 
Example 3.2.

Finally in this section, we note the following result, which says that the trihomomor-
phism (–)0 is “locally conservative”.

4.6. Proposition. A V-transformation γ: F ⇒ G: B→C is an equivalence in V-Bicat(B, C)
if and only if each of its components is an equivalence in C0.

Proof. The “only if” direction is immediate, since composition in V-Bicat(B, C) is lifted 
componentwise from C0. Conversely, if each γx has equivalence pseudoinverse γ�

x in C0, 
then we obtain a V-transformation γ�: G ⇒ F with 1-cell components γ�

x and 2-cell 
components

GF

C(1, γ �) C(1, γ�)C(γ�, 1)

γ̄−1

.

The 2-cells witnessing each γ�
x as pseudoinverse to γx now form the components of 

invertible V-modifications witnessing γ� as pseudoinverse to γ. �
5. Modules

In this section, we define left, right, and two-sided modules between V-bicategories. In 
the presence of suitable extra structure on V, we could define left A-modules as V-functors 
A → V, right B-modules as V-functors Bop → V, and A-B-modules as V-functors Bop ⊗
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A → V; the extra structure required on V would be right closedness (in order to view V
itself as a V-bicategory) and some form of symmetry (to form the opposite V-bicategory 
of B, and the tensor product Bop ⊗ A). However, we prefer to introduce modules as a 
separate notion, rather than reducing them to V-functors; this allows us to present them 
in a manner that both is simpler to work with, and also valid even in the absence of the 
above-mentioned extra structure on V; in particular, we need not require any form of 
symmetry.

Throughout this section, A and B will be V-bicategories.

5.1. Modules and bimodules

A right B-module W , also written as W : • −�→ B, is given by the following data:

• For each x ∈ B, an object Wx of V;
• For each x, y ∈ B, a morphism mxy: Wy ⊗ B(x, y) → Wx of V;
• For each x, y, z ∈ B, invertible 2-cells

subject to two axioms that as string diagrams coincide with the axioms for a V-bicategory, 
but now interpreted in the respective categories V(Wy ⊗ B(x, y), Wx) and V( ((Wz ⊗
B(y, z)) ⊗ B(x, y)) ⊗ B(v, x), Wv ).

Dually, a left A-module W (written W : A −�→ •) is given by objects Wx in V for each 
x ∈ A, morphisms mxy: A(x, y) ⊗Wx → Wy for each x, y ∈ A, and for each x, y, z ∈ A, 
invertible 2-cells

subject to two axioms that as string diagrams again coincide with the two axioms for a 
V-bicategory, interpreted in appropriate hom-categories.

Finally, an A-B-bimodule M : A −�→ B is given by objects M(b, a) ∈ V for each a ∈ A
and b ∈ B, together with left A-module structures on each M(b, –), right B-module 
structures on each M(–, a), and for each a, a′ ∈ A and b, b′ ∈ B, invertible 2-cells
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satisfying two axioms that as string diagrams both coincide with the second V-bicategory 
axiom, but interpreted in appropriate hom-categories.

In what follows, we will give a number of constructions and definitions that operate 
equally well on left modules, right modules and bimodules. We shall typically describe 
those constructions in the most involved case, that of bimodules, and leave it to the 
reader to derive the corresponding one-sided versions in which an indexing V-bicategory 
has been replaced by •. On occasions, such replacement will lead us to the consideration 
of “bimodules” • −�→ •; by definition, these are simply objects of V, with the morphisms 
and transformations between them being the 1- and 2-cells of V.

5.2. Example. For each V-bicategory C, there is a bimodule C: C −�→ C, the hom-
module of C, whose components are the hom-objects C(b, c), whose left and right action 
morphisms are given by composition in C, and whose coherence 2-cells are unit and 
associativity constraints for C.

5.3. Example. Given F : B → C and M : A −�→ C, there is an A-B-bimodule M(F, 1)
whose component at (b, a) is M(Fb, a), whose left actions are those of M , and whose 
right actions are given by

M(Fb, a) ⊗ B(b′, b) 1⊗F−−−→ M(Fb, a) ⊗ C(Fb′, F b) m−−→ M(Fb′, a)

with unit and associativity constraint 2-cells given by

1F

1j
1j

m

r

1ι−1

τ
and

1F

1m

1m
mm

a

1(FF )

(1F )1 (1F )F

1F

1F

m1

α

1μ

.

The bimodule constraint cells are given by

1m

m

m

a

1F

1F
1(1F )

m1

α

.

Dualising the above, from each G: A → B and M : B −�→ C, we obtain an A-C-bimodule 
M(1, G) with M(1, G)(c, a) = M(c, Ga), and remaining data obtained analogously to 
before. Combining the two constructions, we obtain from any F : B → D, G: A → C and 
M : C −�→ D, a bimodule M(F, G): A −�→ B.

5.4. Module morphisms

If V, W : • −�→ B, then a right module morphism ϕ: V →W is given by:
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• For each x ∈ B, a morphism ϕx: V x → Wx in V;
• For each x, y ∈ B, invertible 2-cells

subject to the axioms that for all x ∈ B, we have

1j

m

ϕ

r
�

ϕ1

m
ϕ̄

τ
=

ϕ1

ϕ

1j

1j

r
�

m

τ

in V(V x, Wx), and that for all x, y, z ∈ B, we have

(ϕ1)1

m1
ϕ1

m
ϕ

a

1m

m
m

m1

ϕ̄1

ϕ̄
α = m1

m m

m

ϕ

(ϕ1)1

ϕ1

1m

1m

a

α ϕ̄

in V( (V z ⊗ B(y, z)) ⊗ B(x, y), Wx ).
Dually, if V, W : A −�→ •, then a left module morphism ϕ: V → W is given by 1-cells 

ϕx: V x → Wx and invertible 2-cells

subject to the axioms that for all x ∈ A, we have

m

j1

l
�

ϕ

σ =

l
�

j1
j1

1ϕ

ϕ

m

m

ϕ

σ

ϕ̄

in V(V x, Wx), and that for all x, y, z ∈ A, we have
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m1

m
m

ϕ

m

1m1ϕ

1m

1(1ϕ)

1ϕ

aα

ϕ̄
1ϕ̄ = m

ϕ m
1m

m

1ϕm1

m1
a

ϕ̄ α

in V( (A(y, z) ⊗A(x, y)) ⊗ V x, Wz ).
Finally, if M, N : A −�→ B, then a bimodule morphism ϕ: M → N is given by mor-

phisms ϕab: M(b, a) → N(b, a) together with 2-cells making each ϕ–b into a left A-module 
morphism and each ϕa– into a right B-module morphism, and such that for all a, a′ ∈ A
and b, b′ ∈ B, we have

m1

m
m

ϕ

m

1m1ϕ

1m

1(ϕ1)

(1ϕ)1

aα

ϕ̄
1ϕ̄−1 =

ϕ

m
ϕ1

m1
(1ϕ)1

m

1m

a
m1

m

ϕ̄−1

ϕ̄1
α

in V( (A(a, a′) ⊗M(b, a)) ⊗ B(b′, b), N(b′, a′) ).

5.5. Example. Let ϕ: M → N be a bimodule morphism all of whose 1-cell components are 
equivalences. Then we obtain a bimodule morphism ϕ�: N → M whose 1-cell components 
are adjoint inverses of the 1-cell components of ϕ, and whose 2-cell components are the 
mates under adjunction of the inverses of the 2-cell components of ϕ. In fact, ϕ� is 
pseudoinverse to ϕ in the bicategory of bimodules as defined below.

5.6. Example. Given a V-functor F : B → C, there is a morphism of B-B-bimodules 
F̂ : B → C(F, F ) with 1-cell components Fb,b′ , and 2-cell components obtained from binary 
functoriality constraints μ for F and pseudofunctoriality of ⊗.

5.7. Example. Given a map of C-D-bimodules ϕ: M → N together with V-functors 
F : A → C and G: B → D, we induce a map ϕ(G, F ): M(G, F ) → N(G, F ) of 
A-B-bimodules, whose 1-cell component at (x, y) is ϕGx,Fy and whose 2-cell components 
are obtained from those of ϕ and interchange isomorphisms for ⊗.

5.8. Module transformations

If ϕ, ψ: V → W are right B-module morphisms, then a module transformation Γ: ϕ ⇒
ψ is given by 2-cells Γx: ϕx ⇒ ψx for each x ∈ B, subject to the axiom that for all 
x, y ∈ B, we have

m

ϕ1

ϕ

m

ψ
ϕ̄

Γ
=

m

ψ

ψ1

m

ϕ1

ψ̄

Γ1
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in V(V y ⊗ B(x, y), Wx). The notion of left B-module transformation is dual; while if 
ϕ, ψ: M → N are A-B-bimodule morphisms, then a bimodule transformation Γ: ϕ ⇒ ψ

is given by 2-cells Γab: ϕab ⇒ ψab making each Γa– and each Γ–b into a one-sided module 
transformation.

5.9. Compositional structure

The A-B-bimodules, morphisms and transformations form a bicategory AModB; com-
position of module morphisms is given by that in V at the level of 1-cell data, and by 
pasting in V together with the pseudofunctoriality of ⊗ at the 2-cell level. The remaining 
data for this bicategory—horizontal and vertical composition of 2-cells, and associativity 
and unit coherence isomorphisms—is obtained pointwise from that in V. Similarly, we 
obtain bicategories AMod• of left A-modules, and •ModB of A-B-bimodules (and in 
accordance with our convention, we also have •Mod• := V).

5.10. Comparing • with I

There are evident forgetful functors AModB → •ModB, AModB → AMod•, and 
so on. It is easy to see that with I the unit V-bicategory from Example 3.2, the func-
tors IModB → •ModB, AModI → AMod•, and so on, are biequivalences. By passing 
across these biequivalences, many statements about bimodules literally imply the cor-
responding statements for one-sided modules. On the other hand, many definitions and 
proofs are convenient to perform for one-sided modules first, so the notion of one-sided 
module is still useful to have around.

5.11. Ordinary functors induced by modules

If M is an A-B-bimodule, then the construction of Section 3.4 carries over, mutatis 
mutandis, to yield a functor Bop

0 × A0 → V sending (b, a) to M(b, a), and so on. With 
respect to this functor structure, the action morphisms M(b, a) ⊗ B(b′, b) → M(b′, a)
and A(a, a′) ⊗ M(b, a) → M(b, a′) now become pseudonatural in each variable, pre-
cisely as in Section 3.4; as there, we shall uniformly denote the 2-cells witnessing this 
pseudonaturality by α.

5.12. Example. Given M : A −�→ C, there is for any V-bicategory B a functor 
M(–, 1): V-Bicat(B, C)op → AModB that on 0-cells sends F to M(F, 1) as defined 
in Example 5.3. On 1-cells, it sends a V-transformation γ: F ⇒ G to the bimodule mor-
phism M(γ, 1): M(G, 1) → M(F, 1) whose 1-cell components are M(γb, a): M(Gb, a) →
M(Fb, a), whose 2-cell components for the left actions are the pseudonaturality mor-
phisms α of (3.1), and whose 2-cell components for the right actions are given by
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1F

1FC(γ, 1)1

m
m

1C(1, γ
)

1G

1C(γ, 1) m

C(γ, 1)α

1γ̄−1

α−1

.

On 2-cells, M(–, 1) sends a V-modification Γ: γ � δ to the bimodule transformation 
M(γ, 1) ⇒ M(δ, 1) with components M(Γb, a). The functoriality constraints of M(–, 1)
are obtained pointwise from those of the functor Bop

0 ×A0 → V as defined in the preceding 
section.

Dualising the above construction, we obtain a functor M(1, –): V-Bicat(B, A) →
BModC ; and replacing the bicategory B by •, we obtain two further variants: a functor 
C0 → AMod• sending c to M(c, –), and a functor A0 → •ModC sending a to M(–, a).

5.13. Copowers of modules

If W is a right B-module and A ∈ V, then there is a right B-module A ⊗W , called 
the copower of W by A, that has (A ⊗W )(x) = A ⊗Wx, action morphisms

(A⊗Wy) ⊗ B(x, y) a−→ A⊗ (Wy ⊗ B(x, y)) 1⊗m−−−−→ A⊗Wx

and unit and associativity constraints given by the respective 2-cells

a

1j

1(1j)
1r

r

1m

ρ−1

1τ

and

a1

1a

1m

a

a

1(1
m

)

1m

1m

a

(1m)1

1(m
1)

π

1α
.

The assignation (A, W ) �→ A ⊗W is the action on objects of a functor

⊗:V × •ModB → •ModB, (5.1)

that on morphisms, sends (f, ϕ): (A, V ) → (A′, V ′) to the module morphism f ⊗ ϕ with 
1-cell components (f ⊗ ϕ)x = f ⊗ ϕx, and 2-cell components

1m

(fϕ)1

f(ϕ1) 1(ϕ1)

a

a

1ϕ fϕ

f1

1m 1m

1ϕ̄
;

and which on 2-cells, sends (γ, Γ): (f, ϕ) ⇒ (g, ψ) to the module transformation γ ⊗ Γ
with components (γ⊗Γ)x = γ⊗Γx. The pseudofunctoriality constraints of ⊗ are obtained 
pointwise from the pseudofunctoriality of the tensor product on V.

The functor (5.1) in fact underlies an action of the monoidal bicategory V on the 
bicategory •ModB. Thus, for each right B-module W , there is a module equivalence 
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l: I ⊗W → W in •ModB with 1-cell components lWx: I ⊗Wx → Wx and 2-cell compo-
nents obtained using λ and pseudonaturality of l. Similarly, for each W ∈ •ModB and 
A, B ∈ V, there is a module equivalence a: (A ⊗ B) ⊗ W → A ⊗ (B ⊗ W ) with 1-cell 
components aA,B,Wx, and 2-cell components obtained using π and pseudonaturality of 
a. Finally, there are invertible module modifications π, ν and λ whose components are 
those of the corresponding coherence constraints for the monoidal bicategory V; it follows 
that these satisfy axioms corresponding to the axioms for a monoidal bicategory.

In a completely analogous way, we can define the copower W ⊗B of a left A-module 
W by an object B; it has components (W ⊗B)(x) = Wx ⊗B and action morphisms

A(x, y) ⊗ (Wx⊗B) a
�−−→ (A(x, y) ⊗Wx) ⊗B

m⊗1−−−−→ Wy ⊗B,

and provides the assignation on objects of a right action ⊗: AMod• × V → AMod• of 
the monoidal bicategory V on AMod•.

Finally, we may combine the above two constructions; given a left A-module V and 
a right B-module W , there is an A-B-bimodule V ⊗W with (V ⊗W )(b, a) = V a ⊗Wb, 
with right B-actions (1 ⊗m) ◦a: (V a ⊗Wb) ⊗B(b′, b) → V a ⊗Wb′ and with left A-actions 
(m ⊗ 1) ◦ a�: A(a, a′) ⊗ (V a ⊗Wb) → V a′ ⊗Wb. This construction underlies a functor

⊗:AMod• × •ModB → AModB, (5.2)

which is compatible with the actions of V on AMod• and •ModB in the sense that we 
have, for every V : A −�→ •, A ∈ V and W : • −�→ B, an equivalence a: (V ⊗ A) ⊗ W →
V ⊗ (A ⊗W ) of A-B-bimodules with 1-cell components aV a,A,Wb, together with further 
invertible bimodule transformations π and ν witnessing the coherence of these data.

5.14. Bimodules via copowers

We may use copowers to restate the definition of bimodule purely in terms of one-sided 
modules. Given a bimodule M : B −�→ C, the left B-action maps mbb′c: B(b, b′) ⊗M(c, b) →
M(c, b′) may be seen as the 1-cell components of a family of right C-module morphisms 
mbb′–: B(b, b′) ⊗M(–, b) → M(–, b′), where in the domain we are forming the copower of 
M(–, b) by B(b, b′); the 2-cell components of mbb– are precisely the bimodule compatibil-
ity 2-cells of M . In fact, it is easy to see that giving the data of a B-C-bimodule is precisely 
equivalent to giving a family of right C-modules M(–, b), a family of right C-module mor-
phisms B(b, b′) ⊗ M(–, b) → M(–, b′), and a family of right C-module transformations 
expressing the unit and multiplication constraints required for us to have a left B-module 
“in the world of right C-modules”. Of course, we may dually view a B-C-bimodule as a 
right C-module “in the world of left B-modules”. An entirely similar argument allows 
us to restate the definition of bimodule morphism solely in terms of one-sided module 
morphisms.
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6. Tensor product of modules

An important fact about modules between (small) enriched categories is that—under 
suitable cocompleteness assumptions on the base—they form a bicategory V-Mod whose 
1-cell composition is given by tensor product of bimodules. There is an analogue of this 
at the level of enriched bicategories; for a sufficiently cocomplete V, there is a tricategory 
V-Mod whose objects are small V-bicategories, with V-Mod(B, C) = BModC and with 
composition of 1-cells given by a suitable tensor product. We shall not construct V-Mod
in its entirety in this paper, but we will need, among other things, the tensor product 
giving its 1-cell composition. The tensor product of two bimodules will be characterised 
as a classifier for “bilinear maps”; we begin, therefore, by discussing the relevant notion 
of bilinearity.

6.1. Module bimorphisms

Given V : • −�→ B, W : B −�→ •, and A ∈ V, a module bimorphism ϕ: V, W → A is given 
by:

• For each x ∈ B, a morphism ϕx: V x ⊗Wx → A in V;
• For each x, y ∈ B, invertible 2-cells

subject to two axioms that as string diagrams, once again take the same shape as the 
two axioms for a V-bicategory, though now with ϕ and ϕ̄ replacing some instances of m
and α. Given M : A −�→ B, N : B −�→ C and P : A −�→ C, an (A, B, C)-module bimorphism
ϕ: M, N → P is given by 1-cells ϕabc: M(b, a) ⊗ N(c, b) → P (c, a) together with 2-cells 
making each ϕ–bc into a left A-module morphism, each ϕa–c into a module bimorphism 
over B, and each ϕab– into a right C-module morphism. There are corresponding notions 
of module bimorphism in which any of A, B or C have been replaced by •.

6.2. Example. Given M : A −�→ B, the action morphisms M(b, a) ⊗B(b′, b) → M(b′, a) are 
the 1-cell components of a module bimorphism m: M, B → M , whose 2-cell components 
are obtained from the associativity constraints of the action. Similarly, the left action 
morphisms of M are components of a module bimorphism m: A, M → M .

6.3. Example. Let ϕ: M, N → P be an (A, B, C)-module bimorphism, and F : B′ → B
a V-functor. There is a module bimorphism M(F, 1), N(1, F ) → P whose 1-cell compo-
nents are ϕa,Fb,c and whose 2-cell components are those of ϕ for the A- and C-actions, 
and are obtained from those of ϕ together with pseudonaturality of a for the B′-action. 
By abuse of notation, we refer to this induced bimorphism also as ϕ.
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6.4. Bimorphism transformations

Given module bimorphisms ϕ, ψ: V, W → A, with V , W and A as before, a transfor-
mation Γ: ϕ ⇒ ψ is given by 2-cells Γx: ϕx ⇒ ψx for each x ∈ A, subject to the axiom 
that

ϕ

m1

ϕ

1m

ψ

a

Γ

ϕ̄ = 1m

a

ψ

m1

ϕ

ψΓ
ψ̄

in V( (V y⊗A(x, y)) ⊗Wx, A ). More generally, given M , N and P as before, a bimodule 
transformation Γ: ϕ ⇒ ψ: M, N → P is given by 2-cells Γabc: ϕabc ⇒ ψabc such that each 
Γ–bc, each Γa–c and each Γab– is a module transformation of the appropriate kind.

6.5. Compositional structure

Given M : A −�→ B, N : B −�→ C and P : A −�→ C, the totality of the module bimorphisms 
and transformations M, N → P form a category BimorABC(M, N ; P ), and as M , N and 
P vary, these categories constitute the action on objects of a functor

BimorABC(–, –; –):AModop
B × BModop

C × AModC → CAT. (6.1)

At a morphism (γ, δ, ε): (M, N, P ) → (M ′, N ′, P ′) of AModop
B × BModop

C × AModC , 
the induced functor Bimor(γ, δ; ε) sends ϕ: M, N → P to the bimorphism M ′, N ′ → P ′

with 1-cell components εac ◦ ϕabc ◦ (γab ⊗ δbc) and with compatibility 2-cells for the A, 
B and C-actions obtained from those of ϕ in combination with those of γ and ε (for 
the A-action), of δ and γ (for the B-action) and of δ and ε (for the C-action). On mor-
phisms, Bimor(γ, δ; ε) sends Γ: ϕ ⇒ ϕ′ to the module transformation with components 
εac ◦ Γabc ◦ (γab ⊗ δbc). This defines (6.1) on 1-cells; at a 2-cell (Γ, Δ, Υ), the induced 
natural transformation Bimor(Γ, Δ; Υ) has its component at ϕ the bimodule transfor-
mation with components Υac ◦ ϕabc ◦ (Γab ⊗ Δbc). The functoriality constraint 2-cells 
of (6.1) are obtained from the bicategorical associativity and unit constraints in V and 
the functoriality constraints of ⊗.

6.6. Tensor products

Given M : A −�→ B and N : B −�→ C, a tensor product of M and N over B is a birepre-
senting element M, N → M ⊗B N for the functor Bimor(M, N ; –): AModC → CAT. In 
this section, we consider circumstances under which such tensor products may be shown 
to exist.

Note that there is one case that we can dispatch immediately: when B = •, the tensor 
product of a left A-module M and a right C-module N may be taken to be that defined 
by (5.2). In particular, when A = B = •, so that M is simply an object of V, and N
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a right C-module, a tensor product of M with N is given by the copower M ⊗ N ; and 
dually when B = C = •.

We consider next the case of a general B, but with A = C = •: given a right B-module 
V and left B-module W , we will describe a colimit in V that, if it exists, must underlie the 
tensor product V ⊗B W , and whose existence, conversely, is guaranteed by the existence 
of the tensor product.

Let D denote the category whose object set is obB + (obB)2 + (obB)3, and whose 
morphisms are generated by arrows

ix:x → (x, x) dxy: (x, y) → x cxy: (x, y) → y

pxyz: (x, y, z) → (x, y) qxyz: (x, y, z) → (y, z) nxyz: (x, y, z) → (x, z)

for all x, y, z in B, subject to the simplicial identities di = 1, ci = 1, cp = dq, dp = dm

and cm = cq. We define a functor FVW : D → V that on objects is given by

• FVW (x) = V x ⊗Wx;
• FVW (x, y) = (V y ⊗ B(x, y)) ⊗Wx;
• FVW (x, y, z) = ((V z ⊗ B(y, z)) ⊗ B(x, y)) ⊗Wx;

and on generating morphisms by

• FVW (ix) = ((1 ⊗ j) ⊗ 1) ◦ (r� ⊗ 1);
• FVW (dxy) = m ⊗ 1;
• FVW (cxy) = (1 ⊗m) ◦ a;
• FVW (pxyz) = ((m ⊗ 1) ⊗ 1);
• FVW (nxyz) = ((1 ⊗m) ⊗ 1) ◦ (a ⊗ 1);
• FVW (qxyz) = (1 ⊗m) ◦ a.

To extend these assignations to a functor, it suffices to exhibit functoriality coherence 
cells with respect to the generating simplicial identities. These are given by the respective 
string diagrams:

m1

(1j)1

r
�1

τ1

r
�1

a

(1j)1

1(j1)

1m
1l

ν

1σ

(m1)1

m1

a

a

1m

1m

a

1m

m

m1

m
α

a1

1a

1m

a

a

1(1
m

)

1m

1m

a

(1m)1

1(m
1)

π

1α
.
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6.7. Proposition. With notation as above, the tensor product V ⊗B W and the conical 
bicolimit Δ1 
 FVW represent pseudonaturally equivalent functors V → CAT; in partic-
ular, the one exists if and only if the other does.

Proof. For brevity, we write FVW simply as F for the duration of the proof. We must 
exhibit a pseudonatural correspondence between transformations θ: Δ1 → V(F, A), and 
module bimorphisms V, W → A. Given a transformation θ, its components at x ∈ B
and at (x, y) ∈ B2 pick out morphisms ϕx: Fx → A and ψxy: F (x, y) → A; while the 
pseudonaturality constraints at the maps dxy and cxy of D pick out invertible 2-cells 
δxy: ϕx ◦ Fdxy ⇒ ψxy and γxy: ϕx ◦ Fcxy ⇒ ψxy. Now by replacing ψxy by ϕxy ◦ Fdxy, 
replacing δxy by the identity 2-cell, and replacing γxy by δ−1

xy ◦ γxy, we obtain θ′: Δ1 →
V(F, A), isomorphic to θ, with the property that its pseudonaturality component at dxy
is an identity. A similar transport of structure argument shows that we may replace θ′

with an isomorphic θ′′ whose pseudonaturality component at pxyz is also an identity.
Consider now the full subcategory E of Hom(Δ1, V(F, A)) spanned by objects of 

the form θ′′. By the preceding construction, the inclusion of this subcategory is an 
equivalence; and it is easy to see that any θ′′ is completely determined by the 1-cells 
ϕx: V x ⊗ Wx → A picked out by the component at x ∈ B together with the 2-cells 
ϕ̄xy: ϕx ◦ (m ⊗ 1) ⇒ ϕx ◦ (1 ⊗m) ◦ a picked out by the pseudonaturality constraint at 
cxy. We may now verify that such data represent an object of the subcategory just when 
they satisfy the bimorphism axioms. We may argue similarly to show that modifications 
θ′′ → ω′′ correspond precisely to transformations between the associated bimorphisms. 
Consequently, the full subcategory E is isomorphic to Bimor(V, W ; A), and we therefore 
have, for each A ∈ V, an injective equivalence of categories

Bimor(V,W ;A) → Hom(Δ1,V(F,A)), (6.2)

and these are easily verified to be pseudonatural in A, as required. �
6.8. Corollary. If B is a small V-bicategory, and V is cocomplete, then the tensor product 
V ⊗B W exists for every right B-module V and left B-module W .

We now turn to the construction of the tensor product of a general pair of bimodules 
M : A −�→ B and N : B −�→ C. Just as before, the existence of such may be reduced to the 
existence of certain bicolimits, though now in the bicategory AModC . To this end, let 
D be the category considered before, and define FMN : D → AModC by

• FMN (x) = M(x, –) ⊗N(–, x);
• FMN (x, y) = (M(y, –) ⊗ B(x, y)) ⊗N(–, x);
• FMN (x, y, z) = ((M(z, –) ⊗ B(y, z)) ⊗ B(x, y)) ⊗N(–, x)
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(where the tensor products used are now those of Section 5.13) and with remaining data 
as before. Bearing in mind the remarks of Section 5.14, the proof of Proposition 6.7 now 
adapts immediately to yield:

6.9. Proposition. The tensor product M ⊗B N and the bicolimit Δ1 
 FMN represent 
pseudonaturally equivalent functors AModC → CAT; in particular, the one exists if 
and only if the other does.

6.10. Corollary. Let V be cocomplete, and let each functor – ⊗ X and X ⊗ –: V → V
preserve bicolimits. Given bimodules M : A −�→ B and N : B −�→ C, with B small, the 
tensor product M ⊗B N exists, and is pointwise in the sense that (M ⊗B N)(c, a) =
M(–, a) ⊗B N(c, –).

Proof. Because each –⊗X and X⊗– preserves bicolimits, the bicategory AModC admits 
bicolimits created by the forgetful functor AModC → Vob A×ob C . �
6.11. Compatibility with copowers

Let V : • −�→ B, M : B −�→ C and W : • −�→ C. For any bimorphism ϕ: V, M → W and 
any B ∈ V, we may construct a bimorphism B ⊗ ϕ: B ⊗ V, M → B ⊗ W with 1-cell 
components (1 ⊗ϕbc) ◦ a: (B ⊗ V b) ⊗M(c, b) → B ⊗Wc and with 2-cell components for 
the B-actions and the C-actions given by

a1

1a

1ϕ

a

a

1(1
m

)

1m

1ϕ

a

(1m)1

1(m
1)

π

1ϕ̄

and

a1

1a

1ϕ

a

a

1(1
m

)

1m

1m

a

(1ϕ)1

1(ϕ1)

π

1ϕ̄
.

6.12. Proposition. Suppose that B ⊗ – and each – ⊗ X: V → V preserve bicolimits. If 
ϕ: V, M → W is a universal bimorphism, then so too is B ⊗ ϕ; which is equally to say 
that if V ⊗A M exists with universal morphism ϕ, then so does (B ⊗ V ) ⊗A M , and the 
canonical morphism (B⊗V ) ⊗AM → B⊗(V ⊗AM) induced by B⊗ϕ is an equivalence.

Observe that this result is really constructing a simple instance of an associativity 
constraint in the tricategory of V-bimodules.

Proof. There is a pseudonatural equivalence γ: FB⊗V,M ⇒ B⊗FVM : D → •ModC with 
1-cell components

γx = a, γ(x,y) = a ◦ (a⊗ 1), γ(x,y,z) = a ◦ (a⊗ 1) ◦ ((a⊗ 1) ⊗ 1)

and with pseudonaturality 2-cells given at the generating morphisms ix, dxy, cxy, pxyz, 
mxyz and qxyz of D by the respective composites
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Now if ϕ: V, M → W is a universal bimorphism, then applying (the analogue for bi-
modules of) the functor (6.2) yields a colimiting cylinder ϕ̃: Δ1 → •ModC(FVM , W ). 
Because B ⊗ –: V → V preserves bicolimits, and the forgetful •ModC → Vob C creates 
them, it follows that B ⊗ –: •ModC → •ModC also preserves bicolimits. Thus the com-
posite cylinder

Δ1 ϕ̃−→ •ModC(FVM ,W ) B⊗–−−−−→ •ModC(B ⊗ FVM , B ⊗W )
(–)◦γ−−−−→ •ModC(FB⊗V,M , B ⊗W )

is also colimiting. Applying the pseudoinverse of (6.2) to this cylinder, we obtain a 
universal bimorphism B ⊗ V, M → B ⊗W which, by tracing through the construction, 
we see to be isomorphic to B ⊗ ϕ. �
7. Internal hom of modules

7.1. Left and right homs

Given M : A −�→ B, N : B −�→ C and P : A −�→ C, we can consider each of the partial 
functors:

BimorABC(M,N ; –):AModC → CAT

BimorABC(–, N ;P ):AModop
B → CAT

BimorABC(M, –;P ): BModop
C → CAT.

We have already defined the tensor product M⊗BN of M and N to be a birepresentation 
for the first of these; we now define the right hom 〈N, P 〉 of N and P as a birepresentation 
for the second, and the left hom 〈M, P 〉	 of M and P as a birepresentation for the third. 
In terms of the tricategory V-Mod of V-bimodules, the existence of left or right homs 
amounts to the existence of (tricategorical) right extensions and right liftings. In this 
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section, we discuss the construction of left and right homs between modules; in fact, 
we shall concentrate on the case of right homs, since that is what we will need for our 
further development. The arguments for the left case are entirely analogous.

7.2. Right closed bicategories

In order to assure the existence of right homs, we shall assume that our base monoidal 
bicategory V is right closed, meaning that each functor – ⊗ B: V → V admits a right 
biadjoint [B, –]. (If we were interested in the construction of left homs, we would require 
instead left closedness, involving the existence of right biadjoints to each B ⊗ –). Thus 
we have unit and counit 1-cells uAB: A → [B, A ⊗B] and eBC : [B, C] ⊗B → C, inducing 
adjoint equivalences of categories

V(A⊗B,C) � V(A, [B,C]) (7.1)

pseudonatural in A and C. We call the process of applying either direction of this equiva-
lence exponential transpose, and use a bar to denote its action; thus, given f : A ⊗B → C

and g: A → [B, C], we have

f̄ = A u−→ [B,A⊗B] [1,f ]−−−→ [B,C] and ḡ = A⊗B
g⊗1−−−→ [B,C] ⊗B e−→ C.

We write ω: ¯̄f ⇒ f to denote the invertible 2-cell relating a morphism and its double 
transpose. As usual, the functors [B, –] assemble to give a functor [–, –]: Vop × V → V
in such a way that the equivalences (7.1) become pseudonatural in B as well as A
and C. In the first argument, the action of this functor on f : B′ → B is the map 
[f, C]: [B, C] → [B′, C] obtained as the transpose of

[B,C] ⊗B′ 1⊗f−−−→ [B,C] ⊗B e−→ C.

The coherence data of the monoidal bicategory V may be recast in terms of the right 
hom [–, –]. First, for each A ∈ V, we have an equivalence r̃A := eIA ◦ r�A: [I, A] → A; 
a suitable pseudoinverse is given by the exponential transpose of r: A ⊗ I → A. Next, we 
have for each A, B, C ∈ V an equivalence ãABC : [A, [B, C]] → [A ⊗ B, C], obtained as 
the exponential transpose of

[A, [B,C]] ⊗ (A⊗B) a
�−−→ ([A, [B,C]] ⊗A) ⊗B

e⊗1−−−→ [B,C] ⊗B e−→ C.

A suitable pseudoinverse is obtained by transposing twice the composite

([A⊗B,C] ⊗A) ⊗B a−→ [A⊗B,C] ⊗ (A⊗B) e−→ C.

The pseudonaturality of r� and a� immediately implies a corresponding pseudonaturality 
for r̃ and ã. Finally, we have coherence 2-cells
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to obtain these, it suffices to give 2-cells between the adjoint transposes of their respective 
domains and codomains. We obtain such as the composites

e
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π�

ω
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ω

.

We may similarly recast the data of a right module W : • −�→ B in terms of the 
internal hom. For all x, y ∈ B, the action morphism of W at (x, y) transposes to yield 
m̄: Wy → [B(x, y), Wx]. Furthermore, we obtain coherence 2-cells

where τ̃ is as on the left below, and α̃ is uniquely determined by the 2-cell between the 
exponential transpose of its domain and codomain displayed on the right below.

e e

m
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τ and
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α ω−11

ω−1 ω−1

ω

.

7.3. Construction of right homs

Given modules V, W : • −�→ B, we now consider the existence of the right hom 〈V, W 〉. 
This right hom is, by definition, a birepresentation of the functor Bimor••B(–, V ; W ):
Vop → CAT; but by the remarks at the start of Section 6.6, this is equally a birep-
resentation of the functor •ModB(– ⊗ V, W ): Vop → CAT. Thus, we seek an object 
〈V, W 〉 of V and a module morphism ξ: 〈V, W 〉 ⊗ V → W such that, for every B ∈ V, 
the functor
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V(B, 〈V,W 〉) → ModB(B ⊗ V,W )

f �→ ξ ◦ (f ⊗ V ) (7.2)

is an equivalence of categories.
Working still in the context of a right closed V, we will describe a limit in V which, 

if it exists, must underlie this right hom, and whose existence, conversely, is guaranteed 
by the existence of the hom. To this end, let D be the category defined in Section 6.6, 
and consider the functor FVW : Dop → V that on objects, is given by:

• FVW (x) = [V x, Wx];
• FVW (x, y) = [V y ⊗ B(x, y), Wx];
• FVW (x, y, z) = [(V z ⊗ B(y, z)) ⊗ B(x, y), Wx]

and on generating morphisms by:

• FVW (ix) = [r�, 1] ◦ [1 ⊗ j, 1];
• FVW (dxy) = [m, 1];
• FVW (cxy) = ā ◦ [1, m̄];
• FVW (pxyz) = [m ⊗ 1, 1];
• FVW (nxyz) = [a, 1] ◦ [1 ⊗m, 1];
• FVW (qxyz) = ā ◦ [1, m̄].

To extend these assignations to a pseudofunctor, it suffices to exhibit pseudofunctoriality 
cells with respect to the generating simplicial identities di = 1, ci = 1, cp = dq, dp = dm

and cm = cq. These are given by the respective string diagrams:
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.

7.4. Proposition. With notation as above, the right hom 〈V, W 〉 and the conical bilimit 
{Δ1, FVW } represent pseudonaturally equivalent functors V → CAT; in particular, the 
one exists if and only if the other does.
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Proof. It suffices to exhibit an equivalence, pseudonatural in A, between transformations 
Δ1 → V(A, FVW ) and module morphisms A ⊗ V → W . As before, we abbreviate 
FVW to F . The arguments of Proposition 6.7 dualise without difficulty to show that 
the category of transformations Δ1 → V(A, F ) is equivalent to the category EA whose 
objects are given by a family of 1-cells fx: A → [V x, Wx] and a family of 2-cells

satisfying two coherence axioms; and whose morphisms f → g are given by families of 
2-cells fx ⇒ gx satisfying one coherence axiom. We claim that EA is in turn equivalent 
to the category •ModB(A ⊗ V, W ).

Indeed, from an object f of EA, we obtain a module morphism ϕ: A ⊗ V → W whose 
1-cell component at x is the transpose e ◦ (fx ⊗ 1) of fx; and whose 2-cell component at 
(x, y) is the composite

m
e

e1

(f1)1
f1

m̄1
([1,m̄]1)1 [1,m̄]1

a

ã1
[m,1]1

e

f1
1m

1m

e
ε−1 ε−1

f̄

ε

in V((A ⊗ V y) ⊗ B(x, y), Wx). This assignation provides the action on objects of a 
functor GA: EA → •ModB(A ⊗V, W ), which on morphisms acts by taking componentwise 
transposes. Conversely, given a module morphism ϕ: A ⊗ V → W , we obtain an object 
of EA whose 1-cell component at x is the transpose of ϕx, and whose 2-cell component 
at (x, y) is determined by the 2-cell

e

[m,1]1

e

1m

1m ϕ̄1

ϕ

ϕ1

m

e

a
�
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e1
e

ã1
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ϕ̄−1
ε1
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between the exponential transposes of its domain and codomain. This provides the ac-
tion on objects of a functor HA: •ModB(A ⊗ V, W ) → EA, which on morphisms again 
acts by taking componentwise exponential transposes. The units and counits of the ad-
joint equivalences (7.1) now provide the components of 2-cells witnessing GA and HA as 
pseudoinverse to each other; thus EA and •ModB(A ⊗ V, W ) are equivalent, as claimed. 
Composing with the equivalence between EA and Hom(Δ1, V(A, F )), we obtain equiv-
alences of categories
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Hom(Δ1,V(A,F )) → •ModB(A⊗ V,W ),

which we may without difficulty verify are pseudonatural in A, as required. �
7.5. Corollary. If B is a small V-bicategory, and V is complete and right closed, then the 
right hom 〈V, W 〉 exists for all right B-modules V and W .

We could now, as we did for tensor products, go on to discuss the construction of right 
homs between general bimodules; as before, we would find that these can be constructed 
pointwise: given N : B −�→ C and P : A −�→ C, the right hom 〈N, P 〉: A −�→ B may be 
defined by 〈N, P 〉(b, a) = 〈N(–, b), P (–, a)〉, so long as each of these pointwise right 
homs exists in V. We shall not prove this fact, since we do not need it in what follows; 
nonetheless, it will be useful to have a recognition principle for the more general right 
homs.

7.6. Proposition. Let ϕ: M, N → P be an (A, B, C)-module bimorphism. ϕ exhibits M
as 〈N, P 〉 if and only if, for each a ∈ A and b ∈ B, ϕab–: M(b, a) ⊗ N(–, b) → P (–, a)
exhibits M(b, a) as 〈N(–, b), P (–, a)〉.

Proof. The “only if” direction (of which we shall not make any serious use in what 
follows) follows from the omitted construction above; for the “if” direction, we must 
show that, for each L: A −�→ B, the functor

AModB(L,M) → BimorABC(L,N ;P )

γ �→ ϕ ◦ (γ, 1) (7.3)

is an equivalence of categories. Now, given a bimorphism ψ: L, N → P , the universal 
property of each ϕab induces morphisms θab: L(b, a) → M(b, a) and invertible module 
transformations θ̄: ϕab◦(θab⊗1) ⇒ ψab. We will show that the θab’s comprise the compo-
nents of an A-B-bimodule morphism. To obtain the 2-cells exhibiting compatibility with 
the left A- and right B-actions, it suffices by universality of the ϕab–’s (more precisely, 
by the fully faithfulness of (7.2)) to give invertible module transformations

and



40 R. Garner, M. Shulman / Advances in Mathematics 289 (2016) 1–94
respectively. We obtain such by taking their respective components to be
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.

The assignation ψ �→ θ just described provides the action on objects of a pseudoinverse 
to the functor (7.3). The remaining data of this functor, together with the 2-cells exhibit-
ing it as pseudoinverse are obtained directly from the universality of each M(b, a). �
8. The Yoneda lemma

8.1. Representables and the Yoneda lemma

Let B be a V-bicategory and let W be a right B-module. As in Example 6.2, the 
morphisms mbb′ : Wb ⊗B(b′, b) → Wb′ comprise the 1-cell components of a module bimor-
phism W, B → W , whose corresponding 2-cell components are given by the associativity 
constraints of the action of B on W .

8.2. Proposition (Yoneda lemma). For each b ∈ B, the right module morphism mb–: Wb ⊗
B(–, b) → W exhibits Wb as 〈B(–, b), W 〉.

Proof. We must show that for each A ∈ V, the functor F := m ◦ (– ⊗ 1): V(A, Wb) →
ModB(A ⊗ B(–, b), W ) is an equivalence of categories. We will do so by exhibiting an 
explicit pseudoinverse functor G: •ModB(A ⊗B(–, b), W ) → V(A, Wb). On objects, this 
functor sends a module morphism ϕ: A ⊗ B(–, b) → W to the 1-cell

A r
�−−→ A⊗ I

1⊗j−−−→ A⊗ B(b, b) ϕb−−→ Wb;

on morphisms, it sends a module transformation Γ: ϕ ⇒ ψ to the 2-cell obtained by 
whiskering Γb with (1 ⊗ j) ◦ r�. We now show that this G is pseudoinverse to F . On the 
one hand, if given f ∈ V(A, Wb) then GFf is the composite morphism

A r
�−−→ A⊗ I

1⊗j−−−→ A⊗ B(b, b) f⊗1−−−→ Wb⊗ B(b, b) m−−→ Wb,

which is isomorphic to f via the 2-cell

f1

f

1j

1j

r
�

m

τ

.

The naturality of these isomorphisms in f is immediate, and so we have GF ∼= 1. On 
the other hand, given ϕ: A ⊗ B(–, b) → W a module morphism, FGϕ is the morphism 
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whose 1-cell component at x is (after using pseudofunctoriality of – ⊗ 1):

A⊗ B(x, b) r
�⊗1−−−→ (A⊗ I) ⊗ B(x, b) (1⊗j)⊗1−−−−−−→ (A⊗ B(b, b)) ⊗ B(x, b)
ϕb⊗1−−−−→ Wb⊗ B(x, b) m−−→ Wx.

There is now an invertible module transformation FGϕ ⇒ ϕ with components

r
�1

(1j)1

1(j1)

a

1m

ϕ

1l
ϕ1

m

ν

1σ
ϕ̄

and the naturality of these isomorphisms in ϕ is immediate using the module transfor-
mation axiom. We thus have an isomorphism FG ∼= 1 as required. �
8.3. Corollary. The module bimorphism m: W, B → W exhibits W as 〈B, W 〉.

Proof. By the preceding result and Proposition 7.6. �
We now use the Yoneda lemma to give a number of different descriptions of 

V-transformations in terms of module transformations.

8.4. Proposition. For all V-functors F, G: B → C, the functor

V-Bicat(B, C)(F,G) → BModB(B, C(F,G))

γ �→ B F̂−−→ C(F, F ) C(F,γ)−−−−−→ C(F,G) (8.1)

is an equivalence of categories.

Proof. By the Yoneda lemma, for each b, b′ ∈ B, the composite

C(Fb,Gb′) ⊗ B(–, b) 1⊗F−−−→ C(Fb′, Gb′) ⊗ C(F, Fb′) m−−→ C(F,Gb′) (8.2)

exhibits C(Fb, Gb′) as 〈B(–, b), C(F, Gb′)〉. We use this universal property repeatedly in 
what follows. Let now ϕ: B → C(F, G) be a bimodule morphism. For each b ∈ B, we have 
a right B-module morphism

I ⊗ B(–, b) l−→ B(–, b) ϕb–−−−→ C(F,Gb);

applying universality of (8.2), we obtain morphisms γb: I → C(Fb, Gb), together with 
invertible 2-cells θ: m ◦ (1 ⊗F ) ◦ (γ⊗ 1) ⇒ ϕ ◦ l. We claim that the morphisms γb are the 
1-cell components of a V-transformation γ: F ⇒ G. To obtain the corresponding 2-cell 
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components C(γ, 1) ◦G ⇒ C(1, γ) ◦ F : B(b, b′) → C(Fb, Gb′), we will show that both the 
domain and codomain 1-cells are isomorphic to ϕbb′ : B(b, b′) → C(Fb, Gb′). On the one 
hand, we have a 2-cell C(1, γ) ◦ F ⇒ ϕ given as on the left below; on the other, we 
obtain a 2-cell C(γ, 1) ◦G ⇒ ϕ by universality of (8.2) applied to the invertible module 
modification with components as on the right below.

m

γ1

l
�

F

1F

1F
ϕθ

r�1

m

a

m1

1F 1F 1F

(1γ)1

1(γ1)

1m
m

1l 1ϕ

G1

m

ϕ

ϕ1

1F

m

α

ν

1θ

ϕ̄−1 ϕ̄−1

.

Composing one with the inverse of the other, we obtain the 2-cell components of the 
V-transformation γ as desired. The assignation ϕ �→ γ just described is the action on 
objects of a functor H: BModB(B, C(F, G)) → V-Bicat(B, C)(F, G) that on morphisms, 
sends a bimodule transformation Γ: ϕ ⇒ ϕ′ to the V-modification whose 2-cell compo-
nents are induced by universality of (8.2) applied to the module transformations Γb– ◦ l.

Finally, we show that this functor H is pseudoinverse to (8.1). On the one hand, 
starting from ϕ: B → C(F, G), forming γ = Hϕ and then applying (8.1), the resultant 
C(F, γ) ◦ F̂ admits an invertible modification to ϕ whose 2-cell components are as on 
the left above. On the other, given γ: F ⇒ G, we may apply (8.1) to yield C(F, γ) ◦ F̂

and then apply H to this to obtain δ: F ⇒ G; we now have an invertible V-modification 
δ ⇒ γ with components

m

1F

δ1

m

γ1l

F 1F
1F

θ

.

�

8.5. Proposition. For all V-functors F, G: B → C, the functors

C(1, –):V-Bicat(B, C)(F,G) → BModC(C(1, F ), C(1, G))

and C(–, 1):V-Bicat(B, C)(F,G) → CModB(C(G, 1), C(F, 1))

are equivalences of categories.

Proof. We prove only the case of C(1, –); the other is dual. By Corollary 8.3 and 
Proposition 7.6, the bimorphism m: C(F, G), C(1, F ) → C(1, G) exhibits C(F, G) as 
〈C(1, F ), C(1, G)〉; by the dual of Corollary 8.3, the bimorphism

ϕ = B, C(1, G) Ĝ,1−−−→ C(G,G), C(1, G) m−−→ C(1, G)
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exhibits C(1, G) as 〈B, C(1, G)〉	. Thus, in the diagram of categories and functors

V-Bicat(B, C)(F,G)

C(1,–)

(8.1)
BModB(B, C(F,G))

m◦(–,1)

BModC(C(1, F ), C(1, G))
ϕ◦(1,–)

BimorB(B, C(1, F ); C(1, G))

the top, bottom and right sides are equivalences; it will follow that the left side is too, 
so long as we can show that the square commutes to within natural isomorphism. To 
obtain the component of this at some V-transformation γ: F ⇒ G, observe that the two 
sides of the square send γ to the respective bimorphisms

B, C(1, F ) F̂ ,1−−−→ C(F, F ), C(1, F ) C(F,γ),1−−−−−−→ C(F,G), C(1, F ) m−−→ C(1, G)

and B, C(1, F ) 1,C(1,γ)−−−−−−→ B, C(1, G) Ĝ,1−−−→ C(G,G), C(1, G) m−−→ C(1, G).

We obtain the required invertible transformation between these bimorphisms by taking 
as components the 2-cells

F1

C(1,γ)1

m

C(γ,1)11C(1,γ)

1C(1,γ)

G1

m α−1

γ̄

.

�

In discussing Kan extensions, we will need a mild generalisation of this result; the 
proof is identical in form to the one just given and hence omitted.

8.6. Proposition. For all V-functors F : A → C, G: A → B and H: B → C, the functors

V-Bicat(B, C)(HG,F ) → AModB(B(1, G), C(H,F ))

γ �→ B(1, G) Ĥ−−→ C(H,HG) C(1,γ)−−−−−→ C(H,F )

and V-Bicat(B, C)(F,HG) → BModA(B(G, 1), C(F,H))

γ �→ B(G, 1) Ĥ−−→ C(HG,H) C(γ,1)−−−−−→ C(F,H)

are equivalences of categories.

9. V-categories of right modules

In this section, we describe how the right modules over some V-bicategory B may 
themselves be formed into a V-bicategory. If we were identifying right modules with 
V-functors Bop → V, then the construction we give would be an instance of the more 
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general construction of functor V-bicategories; but since we are treating right modules 
as basic, rather than derived, structures, the construction becomes significantly simpler, 
and may be carried out, again, with fewer assumptions on our base bicategory V; in 
particular, no symmetry is needed.

9.1. Moderate right modules

Let B be a V-bicategory. A right B-module V is said to be moderate if, for every 
right B-module W , the right hom 〈V, W 〉 exists, with universal morphism ξVW : 〈V, W 〉 ⊗
V → W , say. By the Yoneda lemma 8.2, every representable right module B(–, b) is 
moderate; moreover, by Corollary 7.5, we have:

9.2. Proposition. If V is complete and right closed, and B is a small V-bicategory, then 
every right B-module is moderate.

9.3. The V-category of moderate modules

For any V-bicategory B, we now define a V-bicategory MB whose objects are the 
moderate right B-modules, and whose hom-objects are the 〈V, W 〉’s. For each W ∈ MB, 
the unit morphism jW : I → 〈W, W 〉 is obtained by applying the universality of ξWW to 
the module morphism l: I ⊗W → W . This universality also yields an invertible module 
transformation

(9.1)

Given U, V, W ∈ MB, the composition morphism mUVW : 〈V, W 〉 ⊗ 〈U, V 〉 → 〈U, W 〉 is 
obtained by applying universality of ξUW to the module morphism

(〈V,W 〉 ⊗ 〈U, V 〉) ⊗ U a−→ 〈V,W 〉 ⊗ (〈U, V 〉 ⊗ U) 1⊗ξUV−−−−−→ 〈V,W 〉 ⊗ V
ξV W−−−−→ W .

This universality also yields an invertible module transformation

(9.2)

To obtain the left unit constraint σVW : m ◦ (j ⊗ 1) ⇒ l: I ⊗ 〈V, W 〉 → 〈V, W 〉 of MB, it 
suffices by universality of ξVW to give an invertible module transformation between the 
composites of ξVW with (m ◦(j⊗1)) ⊗1 and l ⊗1. We obtain such with 2-cell components 
as on the left in:
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ξ

m1

ξ

l1

1ξ
1ξ

ξ

(j1)1

j1

l

a

j̄

m̄

λ

ξ

m1
1ξ 1l

(1j)1
1(j1)

a

r1

ξ

1j̄
m̄

ν

.

To give the right unit constraint τVW : m ◦ (1 ⊗ j) ⇒ r, it likewise suffices to give an 
invertible module transformation between the composites of ξVW with (m ◦ (1 ⊗ j)) ⊗ 1
and r ⊗ 1. We obtain such by taking its 2-cell component to be as on the right above. 
Finally, to give the associativity constraint αUVWX , it suffices to give an invertible 
module transformation between the composites of ξUX with (m ◦ (1 ⊗m) ◦ a) ⊗ 1 and 
(m ◦ (m ⊗ 1)) ⊗ 1. The 2-cell components of this transformation are given by

ξ

m1

a1

1ξ

1a

a

(1m)1
1(m1)

1ξ

ξ

m1
(m1)1

a
1(1ξ)

1ξ

1ξ

a

ξ

m1

ξ

π

m̄ m̄−1
m̄−11m̄

.

Observe that for all V, W ∈ MB, we have by (7.2) an equivalence of categories 
V(I, 〈V, W 〉) → •ModB(I ⊗ V, W ); and on composing this with the equivalence of 
categories •ModB(l�, W ): •ModB(I ⊗ V, W ) → •ModB(V, W ), we conclude that the 
underlying bicategory of MB is, up to an identity-on-objects biequivalence, the full sub-
bicategory of •ModB on the moderate right modules.

9.4. The MB-module induced by a B-module

Given a right B-module W , the right hom 〈V, W 〉 exists by definition for every moder-
ate B-module V . This allows us to define from W a right MB-module whose component 
at V ∈ MB is 〈V, W 〉, and whose action morphisms and coherence 2-cells defined just 
as in the preceding section. By abuse of notation, we shall denote this right module by 
MB(–, W ), although in general W need not be an object of MB.

9.5. Yoneda embedding

As observed above, every representable right B-module is moderate. We may thus 
define the Yoneda embedding Y : B → MB to be the V-functor with action on objects 
Y b = B(–, b), and action on homs Ybb′ : B(b, b′) → MB(Y b, Y b′) given by applying the 
universal property of MB(Y b′, Y b) = 〈Y b, Y b′〉 to the right module morphism

B(b, b′) ⊗ B(–, b) m−−→ B(–, b′). (9.3)
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This universality also provides invertible module modifications Γ: m ⇒ ξ ◦ (Ybb′ ⊗ 1). To 
obtain the unit isomorphism ιb: jY b ⇒ Ybb ◦jb: I → 〈Y b, Y b〉, it suffices by universality of 
〈Y b, Y b〉 to construct an invertible module transformation ξY b,Y b ◦ (jY b ⊗ 1) ⇒ ξY b,Y b ◦
((Ybb ◦ jb) ⊗ 1). We obtain such by taking its 2-cell components to be

ξ

Y 1

j1

mξ

j1
l

Γ−1
j̄

σ−1

.

Similarly, to define the binary coherence 2-cell μbb′b′′ , it suffices to give an invertible 
module transformation between the composites of ξY b,Y b′′ with (m ◦ (Y ⊗ Y )) ⊗ 1 and 
(Y ◦m) ⊗ 1. We obtain such by taking its 2-cell components to be

ξ

Y 1

m1

m
1ξ

ξξ

1m
1m

Y 1

ξ

m1

(Y Y )1
Y (Y 1) 1(Y 1)

a

α
1Γ Γ Γ−1

α

.

9.6. Proposition. The Yoneda embedding is fully faithful.

Proof. By the Yoneda lemma, each morphism (9.3) exhibits B(b, b′) as 〈Y b, Y b′〉; whence 
each Ybb′ is an equivalence in V as required. �

The following further reformulation of the Yoneda lemma will prove useful in what 
follows. Given any right B-module W , we may as in Section 9.4 form the right B-module 
MB(Y, W ). For each b ∈ B, the right module morphism m–b: Wb ⊗B(–, b) → W induces 
by the universal property of 〈Y b, W 〉 a morphism

υb:Wb → 〈Y b,W 〉,

together with an invertible module transformation Δ: m–b ⇒ ξY b,W ◦ (υb ⊗ 1). We 
claim that the morphisms υb constitute the components of a module morphism W →
MB(Y, W ). To give the 2-cells m ◦ (1 ⊗ Y ) ◦ (υ ⊗ 1) ⇒ υ ◦ m verifying compatibility 
with the right B-actions, it suffices to give an invertible module transformation between 
the composites of (m ◦ (1 ⊗ Y ) ◦ (υ ⊗ 1)) ⊗ 1 and (υ ◦m) ⊗ 1 with ξ. We obtain such by 
taking its 2-cell components to be

ξ

υ1

m1

m
1ξ

mξ

mm1 1m
1m

υ1

(υ1)1

(1Y )1
1(Y 1)

a

m̄

1Γ
Δ

Δ−1
α−1

.
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Since, by the Yoneda lemma, each m–b exhibits Wb as 〈Y b, W 〉, we deduce that the 
morphisms υb are equivalences, and thus conclude that:

9.7. Proposition. For every right B-module W , there is an equivalence of right B-modules 
υ: W → MB(Y, W ), defined as above.

10. Colimits and left Kan extensions

We have now developed enough theory to describe and discuss colimits and left Kan 
extensions for enriched bicategories. By colimit, we of course mean weighted colimit; 
V-bicategories of right modules will play the important role of indexing the weights for 
such colimits. We have chosen to discuss colimits rather than limits since it is these 
that we will require in our further development; note that defining limits and right Kan 
extensions would instead require us to make use of V-bicategories of left modules.

10.1. Weighted colimits

Suppose that we are given F : B → C and a right B-module W . A W -weighted cylinder
under F is given by an object v ∈ C (the vertex of the cylinder) together with a morphism 
of right modules ϕ: W → C(F, v). Given such a cylinder, we obtain for each c ∈ C a right 
module morphism

ϕc = C(v, c) ⊗W
1⊗ϕ−−−→ C(v, c) ⊗ C(F, v) m−−→ C(F, c) (10.1)

whose second constituent is the right module morphism obtained from the bimodule 
structure of C(F, 1) as in Example 6.2. The cylinder ϕ is said to be colimiting if each 
induced ϕc exhibits C(v, c) as 〈W, C(F, c)〉. We write W 
F for the vertex of a colimiting 
cylinder, and call it the colimit of F weighted by W . Note that by Proposition 7.6, ϕ is 
colimiting just when the bimodule morphism

C(v, –) ⊗W
1,ϕ−−−→ C(v, –) ⊗ C(F, v) m−−→ C(F, 1)

exhibits C(v, –) as 〈W, C(F, 1)〉.

10.2. Example. Let F : B → C be any V-functor, and b ∈ B. Partially evaluating 
the bimodule morphism F̂ : B → C(F, F ) of Example 5.6 yields a morphism of right 
B-modules ζ = F̂b–: B(–, b) → C(F, Fb); now for each c ∈ C, the induced morphism 
ζc: C(Fb, c) ⊗ B(–, b) → C(F, c) is precisely that which is asserted to be universal by the 
Yoneda lemma, so that ζ exhibits Fb as B(–, b) 
 F .
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10.3. Uniqueness of colimits

Given F : B → C a V-functor, we have the bimodule C(F, 1) which, as in Example 5.12, 
induces a functor C0 → •ModB sending c to C(F, c) and sending f : c → d to the module 
morphism

C(F, c) l
�−→ I ⊗ C(F, c) f⊗1−−−→ C(c, d) ⊗ C(F, c) m−−→ C(F, d).

Now let W be a right B-module, and let the cylinder ϕ: W → C(F, v) exhibit v as W 
F . 
For each c ∈ C, the universality of ϕc yields an equivalence of categories

C0(v, c) = V(I, C(v, c)) ϕc◦(–⊗1)−−−−−−−→ •ModB(I ⊗W, C(F, c)) (–)◦l�−−−−→ •ModB(W, C(F, c)).

To within isomorphism, this functor sends f : v → c to the composite morphism C(F, f) ◦
ϕ: W → C(F, d); and we therefore conclude that:

10.4. Proposition. If the cylinder ϕ: W → C(F, v) exhibits v as W 
 F , then it also 
exhibits v as birepresenting object for the functor •ModB(W, C(F, –)): C0 → CAT. Con-
sequently, any two W -weighted colimits of F are related in an essentially-unique way by 
an equivalence in C0 commuting with the universal cylinders.

10.5. Preservation of colimits

Given F : B → C, a right B-module W , and a colimiting cylinder ϕ: W → C(F, W 
F )
in C, a functor G: C → D is said to preserve the colimit W 
 F if the composite cylinder

W
ϕ−→ C(F,W 
 F ) Ĝ−−→ D(GF,G(W 
 F ))

is colimiting.

10.6. Functoriality of colimits

The simplest way of discussing the functoriality of taking colimits is to generalise the 
basic notions to depend on an indexing V-bicategory A. Suppose that we are given 
F : B → C and an A-B-module M . An M -weighted cylinder under F is given by a 
V-functor V : A → C (the vertex of the cylinder) together with a bimodule morphism 
ϕ: M → C(F, V ). Given such a cylinder, we obtain for each c ∈ C a module bimorphism

ϕc = C(V, c),M 1,ϕ−−−→ C(V, c), C(F, V ) m−−→ C(F, c) (10.2)

whose second component is obtained as in Examples 6.2 and 6.3. The cylinder ϕ is said to 
be colimiting if each induced ϕc exhibits C(V, c) as 〈M, C(F, c)〉. We write M 
F : A → C
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for the vertex of a colimiting cylinder, and call it the colimit of F weighted by M . By 
Proposition 7.6, to ask that ϕ be colimiting is equally to ask that

C(V, 1),M 1,ϕ−−−→ C(V, 1), C(F, V ) m−−→ C(F, 1)

exhibit C(V, 1) as 〈M, C(F, 1)〉.
By Proposition 7.6 again, if ϕ: M → C(F, V ) is a colimiting cylinder, then so is each 

ϕa–: M(–, a) → C(F, V a), so that the existence of M
F implies that of each M(–, a) 
F ; 
conversely, we have:

10.7. Proposition. Let M be an A-B-bimodule and let F : B → C. If for all a ∈ A the 
weighted colimit M(–, a) 
 F exists in C, then the weighted colimit M 
 F : A → C does 
too, and may be computed pointwise in the sense that (M 
 F )(a) = M(–, a) 
 F with 
the colimiting cylinder for M 
 F being in each component the colimiting cylinder for 
M(–, a) 
 F .

Proof. Suppose that each M(–, a) 
 F exists, with universal cylinder ηa: M(–, a) →
C(F, M(–, a) 
 F ), say. We define a V-functor L: A → C that will be the desired 
M -weighted colimit of F . On objects, we take La = M(–, a) 
 F , as anticipated. To 
define the action on homs Laa′ : A(a, a′) → C(La, La′), consider the composite module 
morphism

A(a, a′) ⊗M(–, a) m−−→ M(–, a′) ηa′−−−→ C(Fb, La′).

The morphism ηLa′
a : C(La, La′) ⊗ M(–, a) → C(F, La′) induced by ηa as in (10.1) ex-

hibits C(La, La′) as 〈M(–, a), C(F, La′)〉, and thus we induce the desired morphism 
Laa′ : A(a, a′) → C(La, La′), together with an invertible module transformation

(10.3)

We now construct the functoriality coherence cells for L. To obtain the unit coherence 
isomorphism ιa: jLa ⇒ Laa ◦ ja: I → C(La, La), it suffices by universality to construct 
an invertible module transformation (jLa ⊗ 1) ◦ ηLa

a ⇒ ((Laa ◦ ja) ⊗ 1) ◦ ηLa
a . We obtain 

such by taking its 2-cell components to be

m

1ηa

L1

j1

m

m

1ηa

1ηa

ηa

j1

l Θσ

σ−1

.
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Similarly, to define the composition coherence constraint μaa′a′′ , it suffices to give an 
invertible module transformation between the composites of ηLa′′

a with (m ◦ (L ⊗L)) ⊗ 1
and (L ◦m) ⊗ 1. We obtain such by taking its 2-cell components to be

m

1ηa

L1

m1

m

1ηa′

m

ηa′′

L1

1m

1m

1m

m

m

a

m1

1ηa

1ηa

1(1ηa)

(LL)1

L(L1)
1(L1)

α 1Θ−1 Θ−1 Θ

α

.

This completes the definition of the V-functor L: A → C; we shall now make the 
morphisms (ηa)b: M(b, a) → C(Fb, La) into the components of a bimodule morphism 
M → C(F, L). Each ηa is already a right B-module morphism; while the 2-cells making 
each (η–)b into a left A-module morphism, are obtained by pasting the components of 
Θaa′ with pseudofunctoriality of ⊗. Finally, we check that η: M → C(F, L) exhibits L as 
M 
 F , which is equally to check that

C(L, 1),M 1,η−−→ C(L, 1), C(F,L) C−→ (F, 1)

exhibits C(L, 1) as 〈M, C(F, 1)〉. But the morphism obtained by evaluating at any a ∈ A
and c ∈ C exhibits C(La, c) as 〈M(–, a), C(F, c)〉, since each ηa exhibits La as M(–, a) 
F ; 
and so the result follows by Proposition 7.6. �

We now discuss the uniqueness of these more general kinds of colimits.

10.8. Proposition. Let M be an A-B-bimodule. If the cylinder η: M → C(F, V ) ex-
hibits V as M 
 F , then it also exhibits V as birepresenting object for the functor 
AModB(M, C(F, –)): V-Bicat(A, C) → CAT. Consequently, any two M -weighted colim-
its of F are related essentially-uniquely by an equivalence in V-Bicat(A, C) commuting 
with the universal cylinders.

Proof. We must show that, for each H: A → C, the functor

V-Bicat(A, C)(V,H) → AModB(M, C(F,H))

γ �→ C(1, γ) ◦ η (10.4)

is an equivalence of categories. By definition of colimit and Proposition 7.6, the bimor-
phism

ψ = C(V,H),M 1,η−−→ C(V,H), C(F, V ) m−−→ C(F,H)
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exhibits C(V, H) as 〈M, C(F, H)〉; while by the dual of Corollary 8.3, the bimorphism

ϕ = A, C(F,H) Ĥ,1−−−→ C(H,H), C(F,H) m−−→ C(F,H)

exhibits C(F, H) as 〈A, C(F, H)〉	. Thus, in the diagram of categories and functors

V-Bicat(A, C)(V,H)

(10.4)

(8.1)
AModA(A, C(V,H))

ψ◦(–,1)

AModB(M, C(F,H))
ϕ◦(1,–)

BimorAAB(A,M ; C(F,H))

the top, bottom and right sides are equivalences; it will follow that the left side is 
too, as required, so long as we can show that the square commutes to within natural 
isomorphism. Evaluating at some V-transformation γ: V ⇒ H, the two sides of the square 
yield the respective bimorphisms

A,M
V̂ ,1−−−→ C(V, V ),M C(1,γ),1−−−−−−→ C(V,H),M 1,η−−→ C(V,H), C(F, V ) m−−→ C(F,H)

and A,M
1,η−−→ A, C(F, V ) 1,C(1,γ)−−−−−−→ A, C(F,H) Ĥ,1−−−→ C(H,H), C(F,H) m−−→ C(F,H),

between which we obtain an invertible modification with components:

V 1

C(1,γ)1

m m

1C(1,γ)

1C(1,γ)

C(γ,1)1
1η

1η

1η

H1

γ̄−11

α .

�

10.9. Left Kan extensions

Suppose we are given a diagram

of V-bicategories, V-functors and a V-transformation. We say that γ exhibits H as the 
left Kan extension of F along G, or that γ exhibits H as LanG F if the morphism of 
B-A-bimodules

B(G, 1) Ĥ−−→ C(HG,H) C(γ,1)−−−−→ C(F,H) (10.5)
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exhibits H as B(G, 1) 
 F . So by Proposition 7.6, the existence of the left Kan extension 
implies the existence of the colimit B(G, b) 
 F for each b ∈ B. (Our terminology follows 
that of [18]; according to [27] these would be “pointwise” Kan extensions.)

Conversely, if B(G, b) 
F exists for each b ∈ B, then on applying Proposition 10.7 to the 
B-A-bimodule B(G, 1), we obtain a V-functor H: B → C and a morphism η: B(G, 1) →
C(F, H) of B-A-bimodules exhibiting H as B(G, 1) 
 F . Applying Proposition 8.6 to η, 
we obtain a V-transformation γ: F ⇒ HG such that the composite (10.5) is isomorphic 
to η. Since η is colimiting, so too is this (10.5), whence this γ exhibits H as LanG F .

10.10. Proposition. Suppose that γ: F ⇒ HG exhibits H as LanG F . Then γ exhibits 
H as the value at F of a (partial) left biadjoint to the functor (–)G: V-Bicat(B, C) →
V-Bicat(A, C).

Proof. Given any K: B → C, we have for each δ: H ⇒ K the module morphisms

B(G, 1) K̂−−→ C(KG,K) C(δG,1)−−−−−→ C(HG,K) C(γ,1)−−−−→ C(F,K)

and B(G, 1) Ĥ−−→ C(HG,H) C(γ,1)−−−−→ C(F,H) C(1,δ)−−−−→ C(F,K)

and between these, we may construct an invertible modification with components:

K

C(δ, 1)

H

C(γ, 1)

C(γ, 1)

C(1, δ)

δ̄

.

As δ varies, these invertible modifications provide the components of a natural isomor-
phism filling the triangle:

The left arrow therein is invertible by Proposition 10.8, while the right one is so by 
Proposition 8.6; whence the top arrow is also an equivalence, as required. �
10.11. Proposition. If γ: F ⇒ HG exhibits H as LanG F , and G is fully faithful, then γ
is an equivalence in V-Bicat(A, C).

Proof. By Proposition 4.6, it suffices to show that each component γa: Fa → HGa is an 
equivalence in C0. As in Example 10.2, the functors F and G induce module morphisms 
ζG: A(–, a) → B(G, Ga) and ζF : A(–, a) → C(F, Fa). Because G is fully faithful, the 
former of these has equivalences as its 1-cell components, and so by Example 5.5 admits 
a pseudoinverse ζ �

G: B(G, Ga) → A(–, a). Now consider the composite
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ϕ := B(G,Ga) ζ�
G−−→ A(–, a) ζF−−→ C(F, Fa).

Since ζF is colimiting, and ζ �
G is an equivalence, it follows easily that their composite is 

also colimiting, and so exhibits Fa as B(G, Ga) 
F . On the other hand, by the definition 
of Kan extension, the module morphism

ϕa = B(G,Ga) Ĥ−−→ C(HG,HGa) C(γ,Hb)−−−−−−→ C(F,HGa)

exhibits HGa as B(G, Ga) 
 F . Thus by Proposition 10.4, there exist an equivalence 
δa: Fa → HGa in C0 and an invertible module transformation

To conclude that γa is an equivalence, it now suffices to show that it is isomorphic to 
δa in C0. By Proposition 10.4, it is enough to show that, on replacing δa with γa in the 
preceding display, there is still an invertible module transformation mediating the centre. 
We obtain such by taking its components to be the 2-cells

1γ (H ·G)γ

m

r
�

H

H1 G1

G�

m

γF γ1

l
�

1F

F

γ̄

.

�

11. Colimits in categories of right modules

In this section we shall prove that—over a suitably well-behaved base V—every cate-
gory of moderate right modules MB is cocomplete; and moreover, that for any V-functor 
F : B → C, the weighted colimit functor (–) 
 F : MB → C is cocontinuous insofar as it is 
defined.

11.1. Cocompleteness of moderate right module categories

We begin with a construction that we will use extensively in this section. Given a 
V-functor F : A → MB, we have the A-B-bimodule MB(Y, F ), where Y : B → MB is, 
as before, the Yoneda embedding. Evaluating at any a ∈ A yields the right B-module 
MB(Y, Fa), which by Proposition 9.7 is equivalent to Fa. We may transport the bimod-
ule structure of MB(Y, F ) along these equivalences to yield an A-B-bimodule F̃ with 
F̃ (–, a) = Fa and with left A-actions induced by the action of F on homs.
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Now for any right B-module W , the hom-object 〈V, W 〉 exists by assumption 
for any V ∈ MB; so by the construction of Section 9.4, we may form the right 
A-module MB(F, W ). There is now a module bimorphism ε: MB(F, W ), F̃ → W with 
A-components εa– = ξFa,W : 〈Fa, W 〉 ⊗Fa → W , and with bimodule compatibility 2-cells 
given by

1ξ

ξξ

m1

a

(1F )1 1(F1)

m̄ .

Note that by the universality of each component εa– and Proposition 7.6, the bimorphism 
ε expresses MB(F, W ) as 〈F̃ , W 〉.

11.2. Proposition. If V is complete, cocomplete and left and right closed, then every 
V-category MB is cocomplete.

Proof. Let A be a small V-bicategory, V be a right A-module and F : A → MB. We 
must show that the colimit V 
F exists in MB. Let F̃ be the A-B-bimodule constructed 
from F as above. Since A is small, and V biclosed and cocomplete, the tensor product 
V ⊗A F̃ exists; for brevity, we shall denote it by C, and write ϕ: V, F̃ → C for its universal 
bimorphism. We first show that C is a moderate B-module; which is to say that, for every 
right B-module W , the functor •ModB(– ⊗ C, W ): B0 → Cat is birepresentable.

Given a right B-module W , let εW : MB(F, W ), F̃ → W be as defined in the preceding 
section. Observe also that by Proposition 6.12, for any A ∈ V, the bimorphism A ⊗ϕ: A ⊗
V, F̃ → A ⊗ C is universal because ϕ is. Thus, for each A ∈ V, we have equivalences of 
categories

•ModB(A⊗ C,W ) (–)◦(A⊗ϕ)−−−−−−−−→ Bimor(A⊗ V, F̃ ;W ) (11.1)

•ModA(A⊗ V,MB(F,W )) εW ◦(–,1)−−−−−−→ Bimor(A⊗ V, F̃ ;W ) (11.2)

pseudonatural in A ∈ V. Composing the first with the pseudoinverse of the second, we 
conclude that •ModA(– ⊗ V, MB(F, W )) � •ModB(– ⊗ C, W ). Since A is small, every 
right A-module is moderate by Proposition 9.2, and so the former functor is birepresented 
by 〈V, MB(F, W )〉; whence also the latter. This proves that C is a moderate B-module.

We now show that C = V ⊗A F̃ is in fact the colimit V 
 F . Since εC exhibits 
MB(F, C) as 〈F̃ , C〉, applying this universal property to the bimorphism ϕ: V, F̃ → C

yields a module morphism ψ: V → MB(F, C) together with an invertible transformation 
Γ: εC ◦ (ψ, 1) ⇒ ϕ. We claim that ψ exhibits C as V 
 F . Thus, for each W ∈ MB, we 
must show that the module morphism

MB(C,W ) ⊗ V
1⊗ψ−−−→ MB(C,W ) ⊗MB(F,C) m−−→ MB(F,W ) (11.3)
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exhibits MB(C, W ) as 〈V, MB(F, W )〉. For this, it suffices to show that its image un-
der (11.2) is isomorphic to the image under (11.1) of the universal module morphism 
ξCW : MB(C, W ) ⊗ C → W . Thus we must show that the bimorphisms

MB(C,W ) ⊗ V, F̃
MB(C,W )⊗ϕ−−−−−−−−−→ MB(C,W ) ⊗ C

ξ−→ W and

MB(C,W ) ⊗ V, F̃
(1⊗ψ),1−−−−−−→ MB(C,W ) ⊗MB(F,C), F̃ m,1−−−→ MB(F,W ), F̃ ε−→ W

are isomorphic. The 2-cells witnessing this to be so are given by the composites

1ξ
ξξ

m1

(1ψ)1

1(ψ1)

a

1ϕ1Γ

m̄ .

�

11.3. Cocontinuity of colimits in the weight

We now give results proving the cocontinuity of the colimit operation, insofar as it is 
defined, in the weight. To this end, let A, B and C be V-bicategories with A and B small, 
let V be a right A-module, let F : A → MB, and let G: B → C. Suppose that the colimit 
Fa 
G exists in C for every a ∈ A; then by Proposition 10.7, the assignation a �→ Fa 
G
is the object assignation of a functor F̃ 
 G: A → C.

11.4. Proposition. In the circumstances just described, if the colimit V 
 (F̃ 
 G) exists 
in C, then so too does the colimit (V 
 F ) 
 G, and they are equivalent.

Proof. For the sake of brevity, we shall in this proof write a weighted colimit W 
 D

simply as W.D; since we do not require functor composition, no confusion should arise. 
Let γ: F̃ → C(G, F̃ .G) and δ: V → C(F̃ .G, V.(F̃ .G)) be colimiting cylinders for F̃ .G and 
V.(F̃ .G) respectively. As in the preceding proof, we construct the colimit V.F in MB as 
the tensor product V ⊗A F̃ . Let ϕ: V, F̃ → V.F be the universal bimorphism of this tensor 
product, and ψ: V → MB(F, V.F ) the corresponding colimiting cylinder; as before, it 
comes equipped with an invertible transformation Γ: ε ◦ (ψ, 1) ⇒ ϕ.

Forming the bimorphism

V, F̃
δ,γ−−→ C(F̃ .G, V.(F̃ .G)), C(G, F̃ .G) m−−→ C(G,V.(F̃ .G))

and applying the universality of ϕ yields a module morphism η: V.F → C(G, V.(F̃ .G))
and an invertible module transformation Δ: m ◦ (δ, γ) ⇒ η ◦ϕ. We claim that η exhibits 
V.(F̃ .G) as (V.F ).G. Thus for each X ∈ C, we must show that the module morphism

C(V.(F̃ .G), X) ⊗ (V.F ) 1⊗η−−−→ C(V.(F̃ .G), X) ⊗ C(G,V.(F̃ .G)) m−−→ C(G,X) (11.4)
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exhibits C(V.(F̃ .G), X) as 〈V.F, C(G, X)〉. To do so, note first that, under the equiva-
lences (11.1) and (11.2), the morphism (11.4) corresponds to a morphism C(V.(F̃ .G), X) ⊗
V → MB(F, C(G, X)). But since the two morphisms

C(F̃ .G,X), F̃ 1,γ−−→ C(F̃ .G,X), C(G, F̃ .G) m−−→ C(G,X)

and MB(F, C(G,X)), F̃ ε−→ C(G,X)

both exhibit their first argument as the hom 〈F̃ , C(G, X)〉, we conclude that there is 
an equivalence of modules ζ: C(F̃ .G, X) → MB(F, C(G, X)) and an invertible module 
transformation Υ: ε ◦ (ζ, 1) ⇒ m ◦ (1, γ). Thus, on applying (11.1) and (11.2) and com-
posing with ζ, (11.4) corresponds to a morphism C(V.(F̃ .G), X) ⊗ V → C(F̃ .G, X), and 
it suffices to show that this morphism is universal. By the universal property of V.(F̃ .G), 
we have the universal morphism

C(V.(F̃ .G), X) ⊗ V
1⊗δ−−−→ C(V.(F̃ .G), X) ⊗ C(F̃ .G, V.(F̃ .G)) m−−→ C(F̃ .G,X) ;

composing with ζ yields a universal morphism C(V.(F̃ .G), X) → MB(F, C(G, X)), and 
we will be done if we can show that the image of this under (11.2) is isomorphic to the 
image under (11.1) of (11.4). The invertible module modification witnessing this to be 
the case has components

ζ1

ξ

m1

1γ

1γ

m
m

1m

a(1δ)1
(1δ)γ

1(δγ) 1ϕ

1η

Υ
α−1

1Δ

.

�

We now give a general result expressing the cocontinuity of taking colimits in the 
weight. Let G: B → C be a V-functor, let D be the full sub-V-category of MB on those 
weights W for which W 
G exists in C, and let J : D ↪→ MB be the inclusion V-functor. 
Since for every W ∈ D, the weighted colimit J̃(–, W ) 
 G = W 
 G exists in C, so too 
does the J̃-weighted colimit of G; we write the underlying functor of this colimit as 
(–) 
 G: D → C, since on objects it sends W to W 
G.

11.5. Proposition. In the situation just described, the functor (–) 
 G: D → C preserves 
every colimit in D that is preserved by the inclusion D ↪→ MB.

Proof. As in the preceding proof, we write weighted colimits as W.D rather than W 
D. 
To say that the V -weighted colimit of a diagram F : A → D (with A small) exists in D
and is preserved by the inclusion D ↪→ MB is to say that the colimit V.F , computed 
in MB, again lies in D. We show that any such colimit is preserved by (–).G. For such 
V and F , we have as in the preceding proof ϕ: V, F̃ → V.F exhibiting V.F as V 
 F̃ , 
inducing ψ: V → D(F, V.F ) the colimiting cylinder, seen now as landing in D ⊂ MB. 
We must show that the composite
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V
ψ−→ D(F, V.F ) (–).G−−−−→ C(F (–).G, (V.F ).G) (11.5)

is again colimiting. Observe first that the functor F (–).G has the same action on objects 
as F̃ .G, and has its action on morphisms determined by the same universal property; 
we may therefore without loss of generality, assume that F (–).G = F̃ .G. We will also 
assume without loss of generality that (V.F ).G has been constructed as V.(F̃ .G), with 
the colimiting cylinder η: V.F → C(G, V.(F̃ .G)) as in the previous proof. Under these 
assumptions, (11.5) becomes a morphism V → C(F̃ .G, V.(F̃ .G)); and to show this is 
colimiting, it suffices to show that it is isomorphic to the colimiting cylinder δ of the 
previous proof. Let γ: F̃ → C(G, F̃ .G) be, as before, a colimiting cylinder for F̃ .G. By 
definition of colimit, the module bimorphism

C(F̃ .G, V.(F̃ .G)), F̃ 1,γ−−→ C(F̃ .G, V.(F̃ .G)), C(G, F̃ .G) m−−→ C(G,V.(F̃ .G)

exhibits its first argument as 〈F̃ , C(G, V.(F̃ .G))〉. Thus to show that (11.5) and δ are 
isomorphic, it suffices to construct an isomorphism between their composites with the 
above-displayed module bimorphism. We obtain such by taking its 2-cell components to 
be

δ1

1γ

m

ψ1

(– � G)1

1γ

m

ε

η

ϕ

Δ
Γ−1

Θ

where Γ and Δ are as in the preceding proof, and Θ is the invertible 2-cell of (10.3). �
12. Free cocompletions

We are now ready to define the free cocompletion of a V-bicategory under a class of 
colimits. Through this section, we assume that our base bicategory V is left and right 
closed, complete and cocomplete.

By a class of weights Φ, we mean a collection of pairs (A, W ) with A a small 
V-bicategory and W a right A-module. A V-bicategory B is said to be Φ-cocomplete if, 
for every (A, W ) ∈ Φ and every V-functor F : A → B, the weighted colimit W 
 F exists 
in B; a V-functor G: B → C between Φ-cocomplete categories is said to be Φ-cocontinuous
if it preserves every such colimit. Given Φ-cocomplete V-bicategories B and C, we write 
Φ-Cocts(B, C) for the bicategory of Φ-cocontinuous V-functors together with all trans-
formations and modifications between them.

Given a class of weights Φ and a V-bicategory C, let us write Φ(C) for the closure of the 
representables in MB under Φ-weighted colimits; that is, the smallest full, equivalence-
replete, sub-V-bicategory of MB that contains the representables and that, for any 
(A, W ) ∈ Φ, contains W 
 F whenever it contains each Fb. By Proposition 11.2 and 
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our standing hypotheses, MB is cocomplete, and it follows immediately that Φ(B) is 
Φ-cocomplete, and that the inclusion J : Φ(B) → MB is Φ-cocontinuous. Moreover, the 
Yoneda embedding Y : B → MB factors through Φ(B), yielding a fully faithful functor 
Z: B → Φ(B).

12.1. Theorem. Z: B → Φ(B) exhibits Φ(B) as the free completion of B under Φ-colimits; 
which is to say that for every Φ-cocomplete C, the functor

Φ-Cocts(Φ(B), C) → V-Bicat(B, C) (12.1)

induced by composition with Z is a biequivalence, with a suitable weak inverse being given 
by left Kan extension along Z.

Proof. Let C be a Φ-cocomplete V-bicategory. First we show that, for any F : B → C, 
the left Kan extension LanZ F : Φ(B) → C exists; for this we must show that the colimit 
Φ(B)(Z, W ) 
 F exists in C for any W ∈ Φ(B). Since Φ(B)(Z, W ) = MB(Y, W ) � W

by Proposition 9.7, it suffices to show that W 
 F exists in C for every W ∈ Φ(B). So 
consider the class of all W ∈ Φ(B) for which W 
 F exists in C; this class is clearly 
equivalence-closed, contains the representables by Example 10.2, and is closed under 
Φ-weighted colimits by Proposition 11.4; and so is all of Φ(B) as required. Thus LanZ F

exists for all F : B → C, and it follows from Proposition 11.5 that it is Φ-cocontinuous. 
Given this, it follows by Proposition 10.10, that the functor (12.1) has a left biadjoint 
given by left Kan extension along Z. Since Z is fully faithful, the unit of this biadjunction 
is, by Proposition 10.11, a pseudonatural equivalence. It remains to show that the counit 
is likewise a pseudonatural equivalence.

So let H: Φ(B) → C be a Φ-cocontinuous V-functor, and write H ′ = LanZ(HZ). We 
must show that the counit component εH : H ′ ⇒ H: Φ(B) → C is an equivalence. This is 
equally to show that each (εH)W : H ′W → HW is an equivalence in C0. To this end, let U
be the collection of W ∈ Φ(B) such that (εH)W is an equivalence. Now, because the unit 
of LanZ � Z∗ is an equivalence, it follows from the triangle identities that the composite 
(εH) ◦ Z is also an equivalence. Thus U contains the representables, and it is clearly 
equivalence-closed; it will thus suffice to show that U is also closed under Φ-colimits. To 
this end, let F : A → Φ(B) take values in U , and let (A, V ) ∈ Φ; we must show that V 
F

also lies in U . Consider the diagram

V
η

Φ(B)(F, V 
 F ) H′

C(H ′F,H ′(V 
 F ))

C(1,(εH)V �F )

V
η

Φ(B)(F, V 
 F )
H

C(HF,H(V 
 F ))
C(εHF,1)

C(H ′F,H(V 
 F ))

where η is a colimiting cylinder for V 
F . This rectangle commutes up to isomorphism by 
the V-naturality of εH . Since H ′ preserves Φ-colimits, the top row is a colimiting cylinder. 
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Since H preserves Φ-colimits, and εHF : H ′F ⇒ HF is by assumption an equivalence, 
the bottom row is also colimiting. It follows from Proposition 10.4 that (εH)V �F is an 
equivalence, and so that V 
 F ∈ U as required. �
13. Change of base

In this section, we consider change of base for enriched bicategories. From a lax 
monoidal functor V → W between monoidal bicategories, we induce a trifunctor 
V-Bicat → W-Bicat; while from monoidal transformations and modifications between 
the former, we induce tritransformations and trimodifications between the latter. We 
shall be particularly interested in the situation where we have a monoidal biadjunction
of monoidal bicategories, and in particular, the effect that this has on weighted colimits 
over the two bases for enrichment.

13.1. The tricategory of monoidal bicategories

Given V and W monoidal bicategories, a lax monoidal functor (L, i, x, ω, δ, γ): V → W
is a lax functor in the sense of [13] between the corresponding one-object tricategories, 
all of whose 3-cell coherence data is invertible; thus the underlying lax functor of bicat-
egories is strong, the lax-natural functoriality constraints i and x (called ι and χ in the 
terminology of [13]) are pseudonatural, and the modifications ω, δ, and γ are invertible. 
In the terminology of [12, Definition 1], this is a “lax homomorphism” between one-object 
tricategories. If i and x are additionally equivalences, so that L becomes a strong functor 
of tricategories, we will call it a strong monoidal functor.

A monoidal transformation L ⇒ K between lax monoidal functors is a “pseudo-icon” 
in the sense of [12, Definition 5]; it comprises a transformation α: L ⇒ K between the 
underlying functors together with suitably coherent invertible modifications M and Π
asserting the compatibility of α with i and x for L and K. A monoidal modification α � β

is, in the terminology of [12, Definition 6], a “pseudo-icon modification”; it comprises 
a modification Γ between underlying transformations satisfying compatibility axioms 
with M and Π for α and β. Monoidal bicategories, lax monoidal functors, monoidal 
transformations and monoidal modifications comprise a tricategory MonBicat; it is 
constructed, for example, in [12, Corollary 27].

13.2. Change of base along a lax monoidal functor

Given L: V → W a lax monoidal functor, we now describe the induced change of base 
trifunctor L: V-Bicat → W-Bicat. First, given a V-bicategory B, the W-bicategory 
LB has the same objects as B, hom-objects LB(x, y) = L(B(x, y)), and remaining data 
obtained as follows:
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• The unit map jx: I → LB(x, x) is the composite

I i−→ LI
L(jx)−−−−→ L(B(x, x));

• The composition map mxyz: LB(y, z) ⊗ LB(x, y) → LB(x, z) is the composite

L(B(y, z)) ⊗ L(B(x, y)) x−→ L(B(y, z) ⊗ B(x, y)) L(mxyz)−−−−−−→ L(B(x, z));

• The associativity constraint αwxyz is the composite

x

(Lm)1

L(m1)

Lm

x1

La

a

1x

Lm

x

L(1m)

1(Lm)
ω

Lα

,

where here, and throughout what follows, we silently suppress applications of the 
binary and nullary functoriality constraints for L;

• The left and right unit constraints σxy and τxy are the respective composites

x

(Lj)1

L(j1)
Lm

i1

Ll

lγ

Lσ

and
1(Lj)

L(1j)
x

Lm

1i

Lr

r
δ−1

Lτ

.

Given a V-functor F : B → C, the W-functor LF : LB → LC has the same action on 
objects as F , action on homs (LF )xy = L(Fxy): LB(x, y) → LC(Fx, Fy), and coherence 
2-cells ιx and μxyz given by the respective composites

Lj

LF

Lj

i

i

Lι

and

(LF )(LF )

L(FF )

x

x Lm

LFLm
Lμ

.

Next, for a V-transformation γ: F ⇒ G, the W-transformation Lγ has 1-cell compo-
nents

(Lγ)x = I i−→ LI
L(γx)−−−−→ L(C(Fx,Gx)),

and 2-cell components given by
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LG

r
�

1i

Lm

1(Lγ)
L(1γ)

x

Lr
�

LF

l
�

i1

Lm

x

(Lγ)1
L(γ1)

Ll
�δ−1 γ

Lγ̄

.

Finally, for a V-modification Γ: γ � δ, the W-modification LΓ: Lγ � Lδ has compo-
nents given by (LΓ)x = L(Γx) ◦ i.

Given V-functors F : B → C and G: C → D, the composites (LG)(LF ) and 
L(GF ): LB → LD agree on objects, and differ on hom-objects only up to binary 
functoriality constraints for L; these constraints assemble into an invertible W-icon 
(LG)(LF ) ⇒ L(GF ). Similarly, for every V-bicategory B, we have an invertible W-icon 
1LB ⇒ L(1B): LB → LB. Using Proposition 3.9 and arguing as in Section 4.3, we 
may derive from these W-icons the coherence data making change of base into a tri-
functor L: V-Bicat → W-Bicat. We may make this more precise, as in Remark 4.4, 
by constructing change of base first as a morphism of locally cubical bicategories 
V-Bicat → W-Bicat, and recovering its instantiation as a trifunctor from the “locally 
horizontal” structure.

13.3. Example. For a monoidal bicategory V, the functor V = V(I, –): V → Cat becomes 
lax monoidal in a canonical way; the binary and nullary monoidality constraints have 
1-cell components given by

V(I, A) × V(I,B) ⊗−−→ V(I ⊗ I, A⊗B) V(l�,1)−−−−−→ V(I, A⊗B) and 1 idI−−→ V(I, I)

respectively. The change of base trifunctor V-Bicat → Cat-Bicat = Bicat is in this 
case the underlying ordinary bicategory trifunctor (–)0 of Section 4.5.

13.4. Change of base along higher monoidal cells

Given a monoidal transformation α: L ⇒ L′: V → W, we induce a tritransforma-
tion α: L ⇒ L′: V-Bicat → W-Bicat as follows. Its 1-cell component at a V-bicategory 
B is the identity-on-objects W-functor αB: LB → L′B with action on homs (αB)xy =
αB(x,y): L(B(x, y)) → L′(B(x, y)), and with functoriality constraint cells built from 
pseudonaturality of α together with M and Π. Now for any V-functor F : B → C, there is 
an invertible W-icon αC ◦ LF ⇒ L′F ◦ αB whose components are built from pseudonat-
urality 2-cells for α; and, arguing as before, we may construct the remaining data of the 
tritransformation α from these invertible icons, either directly using Proposition 3.9, or 
by deriving the structure from a transformation of locally cubical bicategories.

Similarly, given a monoidal modification Γ: α ⇒ β, we have for each V-bicategory 
B a W-icon ΓB whose 2-cell components are given by (ΓB)xy = ΓB(x,y). The 
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W-transformations corresponding to these W-icons constitute the components of a tri-
modification, whose remaining coherence data may be obtained, as before, either by 
direct construction, or more precisely via locally cubical bicategories.

13.5. Functoriality of change of base

The operations described in the preceding two sections are, in a suitable sense, func-
torial; the precise nature of this functoriality is a little delicate. They ought to comprise 
a morphism of tetracategories (weak 4-categories) (–)-Bicat: MonBicat → Tricat, but 
the sheer quantity of coherence that would be involved in making this precise leads us 
to consider a more refined approach. We begin from the assignation V �→ V-Bicat, and 
view the change of base operations as landing in locally cubical bicategories; whereupon 
we obtain a trifunctor (–)-Bicat: MonBicat → DblCat-Bicat. We leave a detailed 
description of the coherence constraints of this trifunctor to the reader.

13.6. Monoidal adjunctions

We will be particularly concerned with change of base in the situation of an adjunction 
of the following sort.

13.7. Lemma (Doctrinal adjunction). Suppose L: V → W is a strong monoidal functor 
that has a right adjoint R: W → V. Then R is canonically a lax monoidal functor.

Proof. Since L is strong, i and x have inverse adjoint equivalences i� and x�. By the usual 
mates correspondence, the constraints ω, γ, and δ induce analogous constraints for i�
and x�, making L into an “oplax monoidal functor” in an obvious sense.

Now we can transfer this structure across the biadjunction L � R using a categorified 
mates correspondence. That is, if η: 1V → RL and ε: LR → 1W are the pseudonatural 
unit and counit of the biadjunction, then x and i for R are the respective composites

Rx⊗Ry
ηR⊗R−−−−→ RL(Rx⊗Ry)

Rx
�
R,R−−−−−→ R(LRx⊗ LRy) R(ε⊗ε)−−−−−→ R(x⊗ y)

and I
ηI−−→ RLI Ri

�−−−→ RI.

The categorified mates correspondence is stated precisely in [25, §3], as an equivalence 
of categories of 2-cells in a Gray-category, but we may apply it in any tricategory by the 
coherence theorem for tricategories. Thus we can obtain the constraint isomorphisms ω, 
γ, and δ for R, and their axioms, by the functoriality of the mates correspondence on 
3-cells. �

We call this situation a monoidal biadjunction; by a categorification of the argument 
of [17], the unit and counit of such a biadjunction are monoidal transformations, and the 
modifications witnessing the coherent satisfaction of the triangle identities are monoidal 
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modifications. Thus the entire biadjunction L � R lifts to the tricategory MonBicat; 
applying the trifunctor (–)-Bicat, we obtain a biadjunction V-Bicat � W-Bicat which, 
since both domain and codomain are locally fibrant, induces in turn a triadjunction 
between underlying tricategories V-Bicat � W-Bicat. We shall write ηB: B → RLB
and εC : LRC → C for the identity-on-objects V- and W-functors forming the unit and 
counit 1-cells of this triadjunction.

13.8. Example. If V is cocomplete and left and right closed, then the lax monoidal functor 
V = V(I, A): V → Cat is the right adjoint of a monoidal biadjunction; the strong 
monoidal left adjoint L is defined by taking LC to be the copower of I ∈ V by C ∈ Cat. 
It is evident that L1 � I, while the binary monoidality constraints LA ⊗LB � L(A ×B)
are obtained via the chain of equivalences

LA⊗ LB = (I ·A) ⊗ (I ·B) � (I ⊗ (I ·B)) ·A � ((I ⊗ I) ·A) ·B � I · (A×B)

= L(A×B)

using the fact that each functor X ⊗ (–) and (–) ⊗ Y preserves colimits, in particular 
copowers.

13.9. Monoidal adjunctions and weighted colimits

For the rest of this section, we investigate the effect of a monoidal biadjunction 
V � W on weighted colimits in V- and W-bicategories. Observe first that, given a 
lax monoidal functor L: V → W, the constructions of Section 13.2 carry over mutatis 
mutandis to bimodules; so we induce from any V-bimodule M : A −�→ B a W-bimodule 
LM : LA −�→ LB with components (LM)(b, a) = L(M(b, a)), and so on, and correspond-
ingly for bimodule morphisms and transformations. In this way, we obtain a functor 
L: AModB → LAModLB; and the same is evidently true for left and right modules, 
which we can include in this notation with the convention L• = •.

The functors just described are also “lax” with respect to copowers of modules: given 
A ∈ V and a right B-module W , we have a morphism of right LB-modules x: LA ⊗
LW → L(A ⊗W ), with 1-cell components xA,Wx: LA ⊗L(Wx) → L(A ⊗Wx) and 2-cell 
components obtained from ω together with functoriality constraints for L. There are 
now invertible LB-module modifications ω and γ whose components are those of the 
corresponding coherence constraints for the lax monoidal functor L; it follows that these 
satisfy axioms corresponding to those for a lax monoidal functor. (In fact, this is part of 
the structure of a lax functor of tricategories V-Mod → W-Mod.)

Suppose now that we have a monoidal biadjunction L � R: W → V. For any 
V-bicategory B and any right LB-module W , we can restrict the RLB-module RW

along ηB: B → RLB to obtain the right-B-module R̂W := RW (ηB).

13.10. Lemma. R̂: •ModLB → •ModB is right adjoint to L: •ModB → •ModLB.
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Proof. Let V be a B-module and W an LB-module. A morphism LV → W consists of 
morphisms ϕx: L(V x) → Wx for each x ∈ B, together with invertible 2-cells

satisfying appropriate axioms. On the other hand, a morphism V → R̂W consists of 
morphisms ψx: V x → R(Wx) for each x ∈ B, together with invertible 2-cells

satisfying appropriate axioms. Of course the biadjunction L � R gives us equivalences of 
categories W(LV x, Wx) � V(V x, RWx), so it remains to show that these lift compatibly 
to the additional 2-cell data. Thus, given on the one hand ϕ and ϕ̄ as above, we take 
ψx = Rϕx ◦ ηV x and ψ̄x,y to be the composite

η1

(Rϕ)1

R(ϕ1)

1η
1η

ηη

x

Rm

Rx RLm

m

η

Rϕ

Π−1

Rϕ̄

,

wherein Π is part of the 2-cell data exhibiting η: 1 ⇒ RL as a monoidal transformation. 
On the other hand, given ψ and ψ̄ as above, we take ϕx = εWx ◦Lψx and ϕ̄x,y to be the 
composite

ε1 εε

Lm

Lψ

εm

LRm

1ε

1(Lη)

L(1η)

x(Lψ)1

L(ψ1)

Lx

Lψ̄Π−1
1Δ

,

where now Π is part of the 2-cell data exhibiting ε: LR ⇒ 1 as a monoidal transformation, 
and Δ is a triangle identity 2-cell for the biadjunction L � R. �
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Since L is strong monoidal, each of the comparison morphisms x: LA ⊗ LW →
L(A ⊗W ) described above is an equivalence of modules; combining these equivalences 
with the adjunction just described, we obtain equivalences of categories

•ModB(A⊗ V, R̂W ) � •ModLB(LA⊗ LV,W ), (13.1)

pseudonatural in A. We write the left-to-right version of such an equivalence as (−)� and 
the right-to-left version as (−)�.

13.11. Lemma. Suppose that the morphism ϕ: B⊗LV → W exhibits B as 〈LV, W 〉; then 
(ϕ ◦ (εB ⊗ 1))�: RB ⊗ V → R̂W exhibits RB as 〈V, R̂W 〉.

Proof. Using the adjunction L � R, the assumption, and (13.1), we have equivalences

V(A,RB) � W(LA,B) � ModLB(LA⊗ LV,W ) � ModB(A⊗ V, R̂W )

which are pseudonatural in A ∈ V. Thus, by the Yoneda lemma, the image of 1RB ∈
V(RB, RB) under these equivalences is a universal morphism. It is easy to see that this 
image is isomorphic to (ϕ ◦ (εB ⊗ 1))�, which is thus itself universal, as required. �

Now suppose that V and W are right closed. The equivalences L(A ⊗B) � LA ⊗LB

coming from the strong monoidal structure of L can be regarded as a pseudonatural 
equivalence between the composite functors

V –⊗B−−−−→ V L−→ W and V L−→ W –⊗LB−−−−−→ W.

Therefore, the composite right biadjoints

W R−−→ V [B,–]−−−−→ V and W [LB,–]−−−−−→ W R−−→ V.

are also equivalent; i.e. we have pseudonatural equivalences

[B,RC] � R[LB,C]. (13.2)

This yields a converse to Lemma 13.11.

13.12. Lemma. Suppose V and W are complete and right closed, and R reflects bilimits. 
Then if ψ: A ⊗ V → R̂W exhibits A as 〈V, R̂W 〉, and ϕ: B ⊗LV → W is an LB-module 
morphism with RB = A and (ϕ ◦ (εB ⊗ 1)� ∼= ψ, then ϕ exhibits B as 〈LV, W 〉.

Proof. Since B and LB have the same objects, the category D from Section 6.6 is the 
same whether we define it for B or for LB. Let FVW : Dop → V be the functor defined 
as in Section 7.3 for V and R̂W ; so we have:
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FVW (x) = [V x,RWx];

FVW (x, y) = [V y ⊗ B(x, y), RWx];

FVW (x, y, z) = [(V z ⊗ B(y, z)) ⊗ B(x, y), RWx];

and so on. Let GVW : Dop → W be the analogous functor defined for LV and W ; so we 
have:

GVW (x) = [LV (x),Wx]

= [L(V x),Wx];

GVW (x, y) = [LV (y) ⊗ LB(x, y),Wx]

� [L(V y ⊗ B(x, y)),Wx];

GVW (x, y, z) = [(LV (z) ⊗ LB(y, z)) ⊗ LB(x, y),Wx]

� [L((V z ⊗ B(y, z)) ⊗ B(x, y)),Wx];

and so on. Now using (13.2), we can construct an equivalence R ◦ GVW � FVW . Thus 
the claim follows from Proposition 7.4 and the assumption that R reflects bilimits. �

Now let B be a V-bicategory, C a W-bicategory, W a right B-module, and F : LB → C
a W-functor. F has the adjunct F̄ := RF ◦ ηB: B → RC under the triadjunction 
V-Bicat � W-Bicat; now for any object v ∈ C, the LB-module C(F, v) satisfies 
R̂(C(F, v)) = (RC)(F̄ , v), whence by Lemma 13.10, any morphism ϕ: L(W ) → C(F, v)
has an adjunct ϕ̄: W → RC(F̄ , v).

13.13. Theorem. If ϕ: L(W ) → C(F, v) is an LW -weighted colimit of F , then ϕ̄: W →
RC(F̄ , v) is a W -weighted colimit of F̄ . The converse is true if V and W are complete 
and right closed and R reflects limits.

Proof. By Lemmas 13.11 and 13.12, it suffices to verify that the operation (–◦ (εB⊗1))�

takes the transformation of (10.1) for ϕ to the analogous transformation for ϕ̄. �
13.14. Example. Let V be cocomplete and left and right closed, so that as in Exam-
ple 13.8, we have a monoidal biadjunction L � V : V → Cat; thus for any ordinary 
bicategory B and any Cat-weight W : B → Cat, we have a weight LW : LB → V such 
that LW -weighted colimits in a V-bicategory C are, in particular, W -weighted colimits 
in its underlying ordinary bicategory C0. If R happens to reflect limits (such as if V is 
complete and V(I, –) is conservative), then there is no difference between LW -weighted 
colimits in C and W -weighted colimits in RC. This is a categorification of [18, Section 3.8].
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14. Constructions on monoidal bicategories

In this section we describe two methods of constructing new monoidal bicategories 
from old that will be useful later on.

14.1. Comma bicategories

If V and W are bicategories and R: V → W is a functor, we denote by (W ↓ R) the 
comma bicategory defined as follows:

• Its objects are triples (V, W, f) where V ∈ V, W ∈ W, and f : W → RV .
• Its morphisms are triples (p, q, γ) where p ∈ V(V, V ′), q ∈ W(W, W ′), and γ: Rp ◦f ∼=

f ′ ◦ q.
• Its 2-cells are pairs (α, β) where α: p ⇒ p′ in V, β: q ⇒ q′ in W, and the evident 

cylinder commutes.

There are forgetful functors UV : (W ↓ R) → V and UW : (W ↓ R) → W, with a canonical 
transformation UR: UW → RUV . It is straightforward to verify that UV and UW jointly 
create bicolimits; if R preserves bilimits, then they jointly create bilimits as well. (Here, 
a functor F : A → B is said to create bicolimits if it preserves and reflects them, and 
whenever given D: I → A and W a right I-module such that W 
 FD exists in B, also 
W 
D exists in A; likewise for creation of bilimits.)

14.2. Theorem. If V and W are monoidal bicategories and R: V → W is a lax monoidal 
functor, then (W ↓ R) is a monoidal bicategory, UV and UW are strong monoidal, and UR

is a monoidal transformation. Moreover, a (W ↓ R)-bicategory A is determined exactly 
by the data:

• A V-bicategory AV = UV(A);
• A W-bicategory AW = UW(A) with the same objects as AV ; and
• An identity-on-objects functor JA = UR(A): AW → R(AV).

A (W ↓ R)-functor F : A → B is determined exactly by the data:

• A V-functor FV = UV(F ): AV → BV ;
• A W-functor FW = UW(F ): AW → BW ; and
• An invertible W-icon
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A (W ↓ R)-transformation γ: F ⇒ G is determined exactly by the data:

• A V-transformation γV = UV(γ): FV → GV ;
• A W-transformation γW = UW(γ): FW → GW ; and
• An invertible W-modification

And a (W ↓ R)-modification Γ: γ � δ is determined exactly by the data:

• A V-modification ΓV = UV(Γ): γV � δV ; and
• A W-modification ΓW = UW(Γ): γW � δW ,

such that the obvious diagram of 2-cells commutes.

Proof. The tensor product of W1 → RV1 and W2 → RV2 is defined to be the composite

W1 ⊗W2 → RV1 ⊗RV2
x−→ R(V1 ⊗ V2).

This extends to a functor (W ↓ R) × (W ↓ R) → (W ↓ R), whose action on morphisms 
involves pseudofunctoriality of ⊗ and the pseudonaturality constraint of x. The unit 
object of (W ↓ R) is defined to be i: IW → R(IV). Using interchange isomorphisms, the 
left-associated triple tensor product of W1 → RV1 and W2 → RV2 and W3 → RV3 is 
isomorphic to the composite

(W1 ⊗W2) ⊗W3 → (RV1 ⊗RV2) ⊗RV3
x⊗1−−−→ R(V1 ⊗ V2) ⊗RV3

x−→ R((V1 ⊗ V2) ⊗ V3)

and similarly for other multiple tensor products. Now the tensor associativity constraint 
a for (W ↓ R) has 1-cell components taken from a in V and W, and 2-cell components 
built out of these together with the modification ω. The unitality constraints l and r for 
(W ↓ R) are likewise built out of l and r in V and W together with the modifications γ
and δ. The pseudonaturality constraint 2-isomorphisms for a, l, and r have their compo-
nents taken from those of a, l, and r in V and W, and their axioms follow from those for 
V and W together with the modification axiom for ω, γ, and δ.

The modifications π, ν, λ, and ρ for (W ↓ R) have their (2-cell) components taken 
from π, ν, λ, and ρ in V and W. The modification axioms for π and ν are precisely the 
axioms demanded of a lax functor (see [13, pp. 17–18]), while those for λ and ρ can be 
verified by hand (they should also follow from a coherence theorem for lax functors). 
The tricategory axioms for π, ν, λ, and ρ for (W ↓ R) follow immediately from their 
counterparts in V and W.
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This completes the proof that (W ↓ R) is a monoidal bicategory, and it is obvious on 
inspection that the functors UV and UW are in fact strict monoidal. The modifications 
M and Π making UR into a monoidal transformation are simply coherence isomorphisms 
in W, and their axioms follow from the coherence theorem for tricategories.

Now, the hom-objects of a (W ↓ R)-bicategory A are precisely determined by the 
hom-objects of AV and AW and the action of JA on homs. The composition in A is 
similarly precisely determined by the compositions in AV and AW and the functoriality 
isomorphisms of JA, and correspondingly for the unit. The associativity and unitality 
constraints of A are determined by those in AV and AW , with the requisite axioms 
(making them 2-cells in (W ↓ R)) reducing to the functoriality axioms of JA. And 
the pentagon and triangle axioms of A are exactly those of AV and AW . Functors, 
transformations, and modifications behave similarly; we leave them to the reader. �
14.3. Remark. Note that we used essentially all the data and axioms of a lax func-
tor in proving Theorem 14.2. This is not a coincidence. It is shown in [5] that in the 
2-dimensional case, the correctness of a notion of “lax morphism” (in the sense that it 
coincides with the general definition for algebras over a 2-monad) is essentially deter-
mined by doctrinal adjunction (Lemma 13.7) and the existence of colax limits of arrows 
(comma objects under the identity, as in Theorem 14.2). Thus, one may expect these 
two theorems to eventually imply that lax monoidal functors of monoidal bicategories 
coincide with a general 3-monadic definition of lax morphism.

14.4. Reflective sub-bicategories

Suppose V is a monoidal bicategory and W ⊆ V a full, replete, reflective sub-bicategory 
with inclusion R: W → V and reflector L: V → W . Write ⊥W for the class of morphisms 
of V that are sent to equivalences by L.

14.5. Theorem. If each functor X ⊗ (–) and (–) ⊗ Y preserves ⊥W, then:

• W inherits a monoidal structure.
• The biadjunction L � R is monoidal.
• For a W-bicategory B, the induced counit LRB → B is an identity-on-objects biequiv-

alence. In particular, W-Bicat is a reflective sub-tricategory of V-Bicat.
• A V-bicategory lies in the triessential image of R if and only if its hom-objects all 

lie in W.

Proof. By the Yoneda lemma, an equivalent definition of ⊥W is as the class of morphisms 
V1 → V2 such that the induced functor V(V2, W ) → V(V1, W ) is an equivalence for all 
W ∈ W. We can then characterise LV , for V ∈ V, as an object of W equipped with a 
morphism ηV : V → LV that lies in ⊥W.
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We define the tensor product of W by W1 ⊗̄ W2 = L(W1 ⊗W2), where ⊗ denotes the 
tensor product in V, and its unit object by IW = L(IV). The assumption implies that 
the induced morphism

(W1 ⊗W2) ⊗W3
η⊗1−−−→ (W1 ⊗̄ W2) ⊗W3

η−→ (W1 ⊗̄ W2) ⊗̄ W3

lies in ⊥W; thus, by the alternate characterisation of ⊥W, we obtain a morphism 
āW1,W2,W3 and invertible 2-cell as in

(14.1)

Applying the same argument to a�
W1,W2,W3

yields a pseudoinverse for āW1,W2,W3 ; now 
corresponding arguments allow us to choose the components of ̄l and r̄ and their adjoint 
inverses; the 2-cells making ā, l̄ and r̄ pseudonatural; and the 2-cell constraints π̄, ν̄, λ̄, 
and ρ̄. The coherence axioms for V directly imply the coherence axioms for W (using 
again the definition of ⊥W). We make L a strong monoidal functor with x and i identities; 
the constraint ω is induced by the isomorphism (14.1), while γ and δ are similarly induced 
by the analogous isomorphisms defining ̄l and ̄r respectively. It follows by Theorem 13.13
that R is lax monoidal; its constraints x and i are (up to isomorphism) the defining 
morphisms ηW1⊗W2 : W1 ⊗W2 → L(W1 ⊗W2) and ηIV : IV → L(IV).

The counit εB: LRB → B is, by definition, the identity on objects, and given by the 
counit of L � R on hom-objects. Thus, since the latter counit consists of equivalences, 
each εB is an identity-on-objects biequivalence. Finally, if a V-bicategory B admits a 
biequivalence θ: RC → B, then, since such biequivalences are easily shown to be fully 
faithful, each hom-object B(x, y) is equivalent to an object of W, and hence by repleteness 
must actually lie in W. Conversely, if a V-bicategory A has hom-objects in W, then the 
unit A → RLA is the identity on objects and an equivalence on hom-objects, hence a 
biequivalence. �
15. Enriched categories and modules as a free cocompletion

We have now developed enough enriched bicategory theory to embark upon the second 
main objective of this paper, that of showing that the basic structures into which enriched 
(one-dimensional) categories form themselves can be obtained as free cocompletions of 
certain kinds of enriched bicategory.

In this section, we consider the construction which to a bicategory C assigns the 
bicategory of C-enriched categories and modules between them.4 Some care is needed 

4 As observed in the introduction, we must be careful to distinguish between a category enriched over a 
bicategory C, and a bicategory enriched over a monoidal bicategory V; the former notion has homs given 
by morphisms of C, while the latter has homs given by objects of V.
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in setting up this construction, since composition of C-modules is by tensor product—
decategorifying Section 6—and such tensor products need not always exist. To make our 
construction well-defined, therefore, we impose a cardinality bound κ, of a kind to be 
discussed in the following section, which we use in two ways:

(i) We restrict the C-categories over which we consider C-modules to those with a κ-small 
set of objects; and

(ii) We assume that the bicategory C admits reflexive coequalisers and κ-small coprod-
ucts in each hom, preserved by whiskering on each side; we call such a C locally 
κ-cocomplete.

Under the assumption (ii) on C, we have enough tensor products to form the bicategory 
of κ-small C-categories and C-modules as in (i), yielding an endo-operation C �→ Modκ(C)
on locally κ-cocomplete bicategories. We will show that this operation is one of free 
cocompletion; more precisely, we exhibit locally κ-cocomplete bicategories as bicategories 
enriched over a suitable monoidal bicategory Colimκ, and the operation Modκ(–) as 
given by free cocompletion under a class of Colimκ-enriched colimits.

15.1. Locally κ-cocomplete bicategories

Throughout the rest of the paper, κ will be an arity class in the sense of [30]. This 
means that it is either:

(1) The set {1}, or
(2) The set of cardinal numbers less than some regular cardinal.

The most interesting cases are when κ = {1}, or when it is the set of cardinalities below 
some inaccessible cardinal. A set will be called κ-small if its cardinality belongs to κ. 
A category will be called κ-cocomplete when it admits reflexive coequalisers and κ-small 
coproducts; a κ-cocontinuous functor is one preserving such colimits. As above, a bicate-
gory C will be called locally κ-cocomplete when its hom-categories are κ-cocomplete, and 
its composition functors are κ-cocontinuous in each variable.

15.2. C-categories

Let C be a bicategory. A κ-ary C-category A, consists of:

• A κ-small set ob A;
• For each x ∈ obA, an object εx of C (its extent);
• For each x, y ∈ obA, a morphism A(x, y) ∈ C(εy, εx);
• For each x, y, z ∈ obA, a 2-cell mxyz: A(x, y) ◦ A(y, z) ⇒ A(x, z);
• For each x ∈ obA, a 2-cell jx: 1εx ⇒ A(x, x);
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such that the following diagrams commute for all w, x, y, z ∈ obA:

A(w, x) ◦ (A(x, y) ◦ A(y, z))
∼=

1◦m

(A(w, x) ◦ A(x, y)) ◦ A(y, z)

m◦1

A(w, x) ◦ A(x, z)
m

A(w, z) A(w, y) ◦ A(y, z)
m

A(x, y) ◦ A(y, y)
m

A(x, y) ◦ 1εy ∼=

1◦j

A(x, y)

and

A(x, x) ◦ A(x, y)
m

1εx ◦ A(x, y) ∼=

j◦1

A(x, y).

15.3. Example. If obA is a singleton, then A is just a monad in C. (For this reason, 
[2] referred to C-categories as polyads in C.) In particular, if C is the bicategory Span(C)
of spans in a category C with pullbacks, then a {1}-ary C-category is an internal category 
in C.

15.4. Example. If C has only one object, hence is the delooping of a monoidal category V, 
then a κ-ary C-category is a V-enriched category in the usual sense (with a κ-small set 
of objects).

15.5. Example. Suppose A is a C-category and c ∈ C. Then we have a Cat-category 
C(c, A) whose objects are those of A, with extents C(c, εx) ∈ Cat. The functor 
C(c, A)(x, y): C(c, εy) → C(c, εx) is just postcomposition with A(x, y), and similarly for 
m and j. We emphasise that here, and subsequently, we use Cat-category in accordance 
with the preceding definition to mean “category enriched over the bicategory Cat”, 
rather than “category enriched over the monoidal category Cat”.

15.6. C-modules

If A and B are κ-ary C-categories, then an A-B-module T is given by the following 
data:

• For each x ∈ obA and u ∈ obB, a morphism T (u, x) ∈ C(εx, εu);
• For each x, y ∈ obA and u ∈ obB, a 2-cell mxyu: T (u, x) ◦ A(x, y) ⇒ T (u, y); and
• For each x ∈ obA and u, v ∈ obB, a 2-cell mxuv: B(u, v) ◦ T (v, x) ⇒ T (u, x),

such that diagrams analogous to those in Section 15.2 commute.
If T and S are two A-B-modules, then an A-B-module morphism f : T → S consists of 

2-cells fux: T (u, x) ⇒ S(u, x) such that the following diagrams commute:
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T (u, x) ◦ A(x, y) m

fux◦1

T (u, y)

fuy

S(u, x) ◦ A(x, y)
m

S(u, y)

and

B(u, v) ◦ T (v, x) m

1◦fvx

T (u, x)

fux

B(u, v) ◦ S(v, x)
m

S(u, x).

Thus the A-B-modules and their morphisms form a category Modκ(C)(A, B). If C is 
locally κ-cocomplete, then such categories comprise the homs of a bicategory Modκ(C); 
the composite of an A-B-module S and a B-C-module T is the A-C-module T ◦S defined 
by the coequaliser:

∑
x,y∈ob B

T (u,x)◦B(x,y)◦S(y,w)
∑

x∈ob B
T (u,x)◦S(x,w) (T ◦ S)(u,w), (15.1)

with the obvious extension of this action to module morphisms. The identity module 
of A is defined by 1A(x, y) = A(x, y), with actions given by the composition of A. The 
composite T ◦ S “classifies bilinear C-transformations” out of S and T , in the sense 
that A-C-module morphisms T ◦ S → U are in natural bijection with families of maps 
T (u, x) ◦S(x, w) → U(u, w) that respect the outer A- and C-actions and are “dinatural” 
with respect to the B action (a decategorification of Section 6.1). It follows easily from 
this that both triple composites (T ◦ S) ◦ R and T ◦ (S ◦ R) “classify trilinear maps” 
out of R, S and T , whence are canonically isomorphic; these isomorphisms provide the 
associativity constraints of the bicategory Modκ(C), and the corresponding classifying 
properties of four-fold composites now imply the pentagon axiom. The unit constraints 
and unit coherence axiom follow similarly.

Every v ∈ ob C induces a κ-ary C-category v̂ that has one object 
 with ε(
) = v, 
v̂(
, 
) = 1v, m��� = l = r, and j� = 11v

. Similarly, every f : v → w in C induces a 
v̂-ŵ-module f̂ with f̂(
, 
) = f ; and every α: f ⇒ g induces a module transformation α̂
with α̂�� = α. Clearly 1̂v = 1v̂, while for a composite ĝ ◦ f̂ , the coequaliser in (15.1) is 
trivial, so that ĝ ◦ f̂ ∼= ĝ ◦ f . Thus we obtain a fully faithful functor ˆ(–): C → Modκ(C).

15.7. Remark. Observe that the components of an A-B-module T appear to exhibit 
A as acting “on the right” and B as acting “on the left”; despite this, we call T an 
A-B-module rather than a B-A-module, because we consider a left action to be one that 
is covariant in the variable, and a right action as one that is contravariant, regardless 
of their typographical disposition on the page. This discrepancy would be resolved if we 
were to write composition in C in “diagrammatic” order rather than “applicative” order, 
since then the contravariant B-action would be displayed to act on the right and A on 
the left. What would not change is that a morphism T from A to B in Modκ(C) involves 
1-morphisms for which the following strings are composable in C:

εv
A(u,v)−−−−−→ εu

T (y,u)−−−−−→ εy
B(x,y)−−−−−→ εx.
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This is mandated, among other things, by the need for the functor ˆ(–) to be covariant 
rather than contravariant, since we shall later want to identify it with the embedding of 
C into its free cocompletion under κ-ary collages.

On the other hand, we appear to be writing composition in a C-category in diagram-
matic order, since the domain of mxyz is A(x, y) ◦A(y, z) rather than A(y, z) ◦A(x, y). Of 
course, if we wrote composition in C itself in diagrammatic order, then this appearance 
would be reversed; what would not change is that the morphism in C denoted by A(x, y)
has domain εy and codomain εx, rather than vice versa. As we will see in Section 16, this 
is necessary in order to identify C-transformations with 2-cells in the free cocompletion 
under tight collages.

15.8. Locally κ-cocomplete bicategories via enrichment

We shall now show that the embedding ˆ(–): C → Modκ(C) exhibits Modκ(C) as the 
free completion of C under a suitable class of enriched bicolimits. The appropriate base for 
enrichment will be the 2-category Colimκ of κ-cocomplete categories and κ-cocontinuous 
functors, equipped with a tensor product which we now construct.

There is a 2-monad Pκ on Cat whose 2-category Pκ-Alg of strict algebras and al-
gebra pseudomorphisms is biequivalent to Colimκ. The 2-monad Pκ is lax-idempotent
in the sense of [19], and thus by [11] it is pseudo-commutative. Since Cat is cocom-
plete and Pκ has a rank, it follows by [16,11] that Pκ-Alg, hence also Colimκ, is a 
left and right closed monoidal bicategory. By [4], it is also complete and cocomplete as 
a bicategory, and the forgetful functor Colimκ → Cat preserves and reflects bilimits. 
Moreover, the biadjunction L: Cat � Colimκ: R is monoidal in the sense of Section 13. 
By construction, the tensor product in Colimκ represents functors of multiple variables 
that are κ-cocontinuous in each variable separately, and it follows that Colimκ-enriched 
bicategories are precisely locally κ-cocomplete bicategories; likewise, Colimκ-functors 
are precisely locally κ-cocontinuous functors, and so on.

15.9. Collages

We will now describe the kinds of Colimκ-enriched colimits under which the locally 
κ-cocomplete C is to be completed to obtain Modκ(C). We first give an elementary 
presentation of these colimits. Given a locally κ-cocomplete C and a κ-ary C-category A, 
we may form the functor

Modκ(C)(A, ˆ(–)): C → Cat;

now a collage [35] of A is a birepresentation of this functor. It comprises an object v ∈ C
together with a universal A-v̂-module T . We call the morphisms T (
, x): εx → v the 
coprojections of the collage, and may write the underlying object v as |A|.
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Note that a C-category with object set O is precisely a lax functor A: ∇O → C, where 
∇O is the chaotic (= indiscrete) category with object set O. Similarly, if v ∈ ob C, then an 
A-v̂-module is precisely an oplax natural transformation from the lax functor representing 
A to the constant functor with value v; it follows that a collage of A is equally a lax colimit
of A: ∇O → C, that is, a birepresentation of the functor Oplax(A, Δ(–)): C → Cat. Thus 
the notion of collage, which was defined above only for locally κ-cocomplete bicategories, 
in fact makes sense for any bicategory.

Two special cases of collages are worth singling out.

15.10. Example. If A has one object, hence is just a monad in C, then a collage of A is a 
Kleisli object for this monad.

15.11. Example. Given a κ-small set O and a function ε: O → ob C, define

Aε(x, y) =
{ 1εx x = y,

∅ x �= y,

where ∅ denotes the initial object of C(εy, εx). Then Aε is a κ-ary C-category, and a 
collage of Aε is just a coproduct 

∑
x∈O εx.

In the locally κ-cocomplete case, we can construct all collages from these two types.

15.12. Theorem. If C is locally κ-cocomplete, then the following are equivalent:

(1) C admits all lax colimits of lax functors with κ-small domain.
(2) C admits all κ-ary collages.
(3) C admits Kleisli objects and κ-small coproducts.

Proof. Clearly (1) ⇒ (2), while we have just observed that (2) ⇒ (3). And (3) ⇒ (1) 
is [35, Proposition 2.2(a)]. �
15.13. Collages as Colimκ-colimits

Let O be a κ-small set; by the general theory of [4], there is a bicategory O� such 
that lax functors ∇O → C correspond bijectively with strict functors O� → C; and this 
O� is “flexible”, so that any functor O� → C is equivalent to a strict one. Furthermore, 
there is as in [33, §4], a right O�-module VO such that the lax colimit of A: ∇O → C
can be identified with the VO-weighted colimit of the corresponding O� → C. Letting 
WO = LVO, where L is the free-κ-cocomplete-category functor from Section 15.8, it 
follows from Theorems 15.12 and 13.13 that a locally κ-cocomplete bicategory admits 
collages of κ-ary categories if and only if, when regarded as a Colimκ-bicategory, it is 
Φκ-cocomplete for the class of weights Φκ = {WO | O a κ-small set}. We aim to show 
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that Modκ(C) � Φκ(C); the following few sections gather some preparatory material we 
shall need for this result.

15.14. Collages as absolute colimits

Recall that a map in a bicategory is defined to be a left adjoint morphism. It is thus 
natural to call a right adjoint morphism a comap. Note also that a C-category A can 
equivalently be regarded as a Cop-category Aop with Aop(y, x) = A(x, y); we refer to 
collages in Cop as cocollages in C, and their coprojections in Cop as projections in C.

15.15. Theorem. If C is locally κ-cocomplete with κ-ary collages, then:

(1) The coprojections into any collage are maps, and the projections out of any cocollage 
are comaps.

(2) A morphism out of a collage is a map if and only if its composite with each co-
projection is a map, and a morphism into a cocollage is a comap if and only if its 
composite with each projection is a comap.

(3) For any C-category A and A-v̂-module T , the following are equivalent:
(a) T exhibits v as a collage of A.
(b) Each morphism in T is a map, and their right adjoints form a v̂-A-module (with 

action defined by mates) exhibiting v as a cocollage of A.
(c) T is an equivalence in Modκ(C).

Proof. The first halves of (1) and (2) are [35, Prop. 2.2(b) and (e)]. The equiva-
lence (3a) ⇔ (3c) is [7, Prop. 2.5], and this implies the equivalence with (3b) as remarked 
in [7, Remark 2.6(ii)]. (Note that in [7], our (3c) is taken as the definition of “collage”.) 
The second halves of (1) and (2) then follow by duality. �
15.16. Corollary. κ-ary collages are absolute colimits in locally κ-cocomplete bicategories; 
that is, they are preserved by any locally κ-cocontinuous functor.

Proof. The construction of Modκ is preserved by any locally κ-cocontinuous functor, so 
this follows from (3a) ⇔ (3c) of Theorem 15.15. �
15.17. Collages in Colimκ

Since Colimκ is closed monoidal, it is enriched over itself. (In elementary terms, 
this is just the fact that cocontinuous functors are closed under pointwise colimits, since 
colimits commute with colimits.) Thus, Theorem 15.15(3b) tells us that we can construct 
collages in Colimκ by constructing cocollages, which (being limits) are created by the 
forgetful functor R: Colimκ → Cat.

More specifically, suppose A is a Colimκ-category; thus each εx is a κ-cocomplete 
category and each A(x, y): εy → εx is a κ-cocontinuous functor. Then its collage |A| in 
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Colimκ (which is different from its collage in Cat, of course) is the same as its cocollage, 
which is easy to describe explicitly: it is the category whose objects are given by a family 
of objects (ξx ∈ εx)x∈ob A together with a family of morphisms A(x, y)(ξy) → ξx such 
that for all x, y, z ∈ obA, the diagram

A(x, y)(A(y, z)(ξz)) A(x, y)(ξy)

A(x, z)(ξz) ξx

and

ξx A(x, x)(ξx)

ξx

commutes. Its morphisms are, of course, families (ψx: ξx → ζx)x∈ob A such that for all 
x, y ∈ obA, the diagram

A(x, y)(ξy) A(x, y)(ζy)

ξx ζx

commutes. The category |A| is κ-cocomplete, with colimits computed pointwise on 
the ξ’s. The coprojection Tx: εx → |A| sends ω ∈ εx to the tuple (ξy := A(y, x)(ω))y.

In particular, if A has only one object, so that it is just a κ-cocontinuous monad 
on a κ-cocomplete category, then this describes its Eilenberg–Moore category, which 
therefore coincides with its Kleisli object in Colimκ. Similarly, if each A(x, y) is initial 
(i.e. constant at the initial object of εy), then the morphisms A(x, y)(ξy) → ξx and 
axioms are trivial; thus |A| is just the product 

∏
x∈ob A εx, which therefore coincides with 

the coproduct 
∑

x∈ob A εx in Colimκ.
Finally, the proof of Theorem 15.15 supplies the following recipe for the universal 

property of such collages. Suppose B is κ-cocomplete and Tx: εx → B are κ-cocontinuous 
functors forming a lax cocone; thus we have transformations Tx ◦A(x, y) → Ty satisfying 
the evident axioms. Then the induced functor |T |: |A| → B is defined by the following 
reflexive coequaliser

∑
x,y∈ob A

Tx(A(x, y)(ξy))
∑

x∈ob A
Tx(ξx) |T |(ξ). (15.2)

We are finally ready to prove:

15.18. Theorem. For any locally κ-cocomplete bicategory C, the free cocompletion Φκ(C)
of C under κ-ary collages is equivalent to Modκ(C).

Proof. By its construction in Section 12, Φκ(C) is the closure of C in MC under κ-ary 
collages. This closure certainly contains the full sub-bicategory of MC whose objects are 
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collages of the image of some κ-ary C-category under the Yoneda embedding Y : C → MC. 
We will show that this full sub-bicategory is equivalent to Modκ(C), and that it is closed 
in MC under κ-ary collages; thus it coincides with the desired closure.

Up to equivalence, we can certainly consider the bicategory whose objects are literally 
the κ-ary C-categories (i.e. the objects of Modκ(C)), and whose hom-categories are the 
hom-categories between their collages in MC. If A is a κ-ary C-category, then by the 
construction of colimits in MC in Proposition 11.2, the collage |Y A| of its image in MC
can be defined by

|Y A|(c) := |C(c,A)|.

Here C(c, A) is the Cat-category from Example 15.5—which because C is locally 
κ-cocomplete, is easily seen to in fact be a Colimκ-category—and |C(c, A)| denotes its 
collage in Colimκ.

Now suppose A and B are two κ-ary C-categories. By the universal property of collages, 
a morphism |Y A| → |Y B| in MC is determined by a lax cocone under Y A with vertex 
|Y B|, i.e. by a collection of right C-module morphisms Y (εx) → |Y B|, for each x ∈ obA, 
together with associative module transformations.

However, by the Yoneda lemma, a right C-module morphism Y (εx) → |Y B| is uniquely 
determined by an object of |Y B|(εx) = |C(εx, B)|. And using the explicit description of 
collages in Colimκ from Section 15.17, |C(εx, B)| is equivalent to the category of tuples

(
T (z, x)

)
z∈ob B

with T (z, x) ∈ C(εx, εz)

equipped with associative morphisms B(w, z) ◦ T (z, x) → T (w, x). Thus, to give a mor-
phism |Y A| → |Y B| in MC is equivalent to giving such a tuple for each x ∈ obA, together 
with associative morphisms T (z, x) ◦A(x, y) → T (z, y) that assemble into morphisms in 
|C(εx, B)|; which is precisely to say that they commute with the action morphisms of B. 
In sum, what we have is exactly an A-B-module.

Now the components of the actual morphism |Y A| → |Y B| can be computed us-
ing (15.2). It follows straightforwardly that composition of these morphisms in MC is 
computed as in (15.1). Similarly, the identity morphism |Y A| → |Y A| corresponds to the 
coprojections as described in Section 15.17, and so to the identity module 1A.

We have shown that the “one-step” closure of C in MC under κ-ary collages is equiv-
alent to Modκ(C). But by [7, Proposition 2.2] (plus a little bit of attention to check that 
κ-smallness is preserved), Modκ(C) has κ-ary collages, which by absoluteness of collages 
are preserved by the inclusion into MC. Thus Modκ(C) is closed in MC under κ-ary 
collages, and so is the free cocompletion of C under κ-ary collages. �

Under the equivalence of the preceding theorem, the embedding of C into its free 
cocompletion is identified with ˆ(–): C → Modκ(C). If C already has κ-ary collages, then 
by Theorem 15.15(3c), ˆ(–) is an equivalence (and conversely). This is as we expect for 
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a cocompletion with respect to a class of absolute weights. In particular, we have [7, 
Corollary 2.4]: a locally κ-cocomplete C is equivalent to Modκ(B), for some locally 
κ-cocomplete B, if and only if C has κ-ary collages (and in this case we can take B = C).

15.19. Remark. As is often the case for absolute colimits, if a bicategory has κ-ary 
collages that behave suitably nicely, then it is automatically locally κ-cocomplete. In 
this case, the requisite niceness properties are Theorem 15.15(1), (2), and (3a) ⇒ (3b); 
see [7, Proposition 3.3]. Note the strong analogy with the fact that a category with finite 
coproducts is enriched over commutative monoids if and only if those coproducts are 
biproducts.

15.20. Remark. By Theorem 15.12, Modκ(C) also has all lax colimits of lax functors 
with κ-small domain. Thus, it is also the free cocompletion of C under such lax colimits.

15.21. Remark. We saw in Theorem 15.12 that Φκ-cocompleteness of a locally 
κ-cocomplete bicategory is equivalent to cocompleteness for Φ{1} (consisting of Kleisli 
objects) and also for the class Φκ� of κ-small coproducts. In general, if Φ-cocompleteness 
is equivalent to Φ1-cocompleteness together with Φ2-cocompleteness, it does not follow 
that Φ(C) may be computed as Φ1(Φ2(C)) or Φ2(Φ1(C)); a transfinite iteration is often 
required. However, in this case it is true that Φκ(C) � Φ{1}(Φκ�(C)) (though not in the 
reverse order). Let us explain briefly why.

Recall that a κ-small coproduct 
∑

x∈O εx in a locally κ-cocomplete bicategory C
is equally a collage of the C-category Aε from Example 15.11. Thus, the full sub-
bicategory of MC consisting of κ-small coproducts of representables is equivalent to 
the full sub-bicategory of Modκ(C) determined by the C-categories of this form. But an 
Aε1 -Aε2 -module is nothing but an (O1 × O2)-matrix of morphisms ε1x → ε2y in C, and 
the composition of such modules is given simply by “matrix multiplication”, so that the 
bicategory in question is that which [7, §4.2] denotes by Matrκ(C); it has κ-small co-
products, and hence is Φκ�(C). (In fact, this analysis can be performed with bicategories 
having merely local κ-small coproducts, regarded as enriched over a monoidal bicategory 
Coprodκ.)

Given these explicit descriptions, the results of [3, Sections 1–3] now show that 
Modκ(C) � Mod{1}(Matrκ(C)), whence Φκ(C) � Φ{1}(Φκ�(C)). This decomposition 
can be seen as expressing a distributive law (at a suitable level of weakness) between the 
cocompletion operations Φ{1} and Φκ�.

16. Enriched categories, functors, and modules as a free cocompletion

We now refine the results of the preceding section to describe a free cocompletion 
that from a given enrichment base C generates not only the bicategory Modκ(C) of 
κ-ary C-categories and C-modules, but also the bicategory Catκ(C) of κ-ary C-categories 
and C-functors, together with the embedding Jκ: Catκ(C) → Modκ(C) of the former into 
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the latter. Since a free cocompletion process must produce the same kind of structure 
as output as it consumes as input, this means that the appropriate notion of “base for 
enrichment” now changes: it will involve a pair of bicategories related by an identity on 
objects and locally fully faithful functor. We call instances of this notion equipments; they 
are a generalisation of the proarrow equipments of [39]. In this section, we first describe 
the construction assigning to any (locally κ-cocomplete) equipment C, the equipment 
Modκ(C) of κ-ary C-enriched categories, functors and modules; we then explain how 
locally κ-cocomplete equipments may be viewed as bicategories enriched in a certain 
monoidal bicategory Fκ, and finally, exhibit the assignation C �→ Modκ(C) as a free 
cocompletion process on Fκ-bicategories.

16.1. Equipments

As anticipated above, we define an equipment C to be given by a pair of bicategories 
Cτ and Cλ with the same objects and a functor JC: Cτ → Cλ that is the identity on objects 
and locally fully faithful. We refer to morphisms in Cτ as tight and morphisms in Cλ as 
loose. Every tight morphism f has an underlying loose morphism JC(f); conversely, by 
a tightening of a loose morphism g, we mean a tight morphism f and invertible 2-cell 
JC(f) ∼= g. Since JC is locally fully faithful, any two tightenings of a loose morphism are 
uniquely isomorphic.

Note that an equipment, in our sense, is a structure satisfying the first two axioms of a 
proarrow equipment as defined in [39]. The third axiom given there is that each morphism 
in the image of JC is a map; in this paper, we shall refer to equipments satisfying this 
extra axiom as map equipments.

A morphism of equipments F : C → D is given by a pair of functors Fτ , Fλ between 
the respective tight and loose parts, together with an invertible icon

Note that such an F has the property that, whenever f : x → y in Cλ admits a tight-
ening, so too does Fλ(f); in fact, given just Fλ with this property, we may recover Fτ

from it to within an invertible icon. There are corresponding notions of transformation, 
modification and icon between equipment morphisms; we do not give the details since 
we will not need them.

16.2. Example. A bicategory C can be made into an equipment in two canonical ways. 
For the first, we take Cτ = Cλ = C and JC = 1, so that every morphism in C is tight 
in a unique way; following [23], we call such an equipment chordate. For the second, 
we factorise the inclusion-of-objects functor ob C → C as bijective on objects and 1-cells 
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followed by locally fully faithful; the second part of this factorisation gives an equipment 
JC : Cτ → Cλ in which only identity morphisms admit tightenings, which are unique. 
As in [23], we call such an equipment inchordate. Both the chordate and the inchordate 
equippings can be made functorial with respect to 1-, 2- and 3-cells between bicategories.

16.3. Categories and functors enriched in an equipment

Let C be an equipment. A κ-ary C-category is simply a κ-ary Cλ-category in the sense 
of Section 15.2. Given κ-ary C-categories A and B, a C-functor D: A → B is given by the 
following data:

• For each x ∈ obA, an object Dx ∈ obB and a tight morphism Dx: εx → ε(Dx);
• For each x, y ∈ obA, a 2-cell Dxy: Dx ◦ A(x, y) ⇒ B(Dx, Dy) ◦Dy,

subject to the two axioms that, for all x, y, z ∈ obA, we have:

A(y,z)

A(x,y)

Dx

B(Dx,Dy)

Dy

Dz

B(Dy,Dz) B(Dx,Dz)
D

D

m

=

A(y,z)

A(x,y)

Dx

A(x, z) Dz

B(Dx,Dz)

m

D

in C(εz, ε(Dx)); and that for all x ∈ obA, we have

Dx

A(x,x) Dx

B(Dx,Dx)

j

D
= Dx

Dx

B(Dx,Dx)
j

in C(εx, ε(Dx)). It is crucial in the above definition that the morphisms Dx are tight. 
Note that in the domain and codomain of Dxy, and in the axioms, we have omitted to 
notate the functor JC that ought to be applied to occurrences of Dx and Dy. We will 
continue in such abuses without further comment.

If E: A → B is another C-functor, then a C-transformation ϑ: D ⇒ E is given by 2-cells 
ϑx: Dx ⇒ B(Dx, Ex) ◦ Ex for all x ∈ obA, such that for all x, y ∈ obA, we have:

A(x,y)

Dx

B(Dx,Dy)

Dy

Ey

B(Dy,Ey) B(Dx,Ey)
D

ϑ

m

=

A(x,y)

Dx

B(Dx,Ex)

Ex

Ey

B(Ex,Ey) B(Dx,Ey)
ϑ

E

m

in C(εy, ε(Dx)).

16.4. Example. Let D, E: A → B be C-functors that agree on objects. A C-icon from D
to E is given by a family of 2-cells ϑx: Dx ⇒ Ex: εx → ε(Dx) = ε(Ex) in Cτ satisfying 
the axiom
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Dx Ex

A(x,y) Ey

B(Ex,Ey)
ϑ

E =
Dx

A(x,y) Dy
Ey

B(Ex,Ey)

ϑ

E

.

Every C-icon gives rise to a C-transformation D ⇒ E with components

Dx
ϑ−−−−−→ Ex

∼=−−−−−→ 1ε(Dx) ◦ Ex
j◦1−−−−−−→ B(Dx,Ex) ◦ Ex.

16.5. The bicategory of C-categories

For any equipment C, the κ-ary C-categories, C-functors and C-transformations form 
a bicategory Catκ(C) as follows.

Given a C-functor D: A → B, the identity C-transformation D ⇒ D is induced by the 
C-icon whose components are identity 2-cells 1Dx

: Dx ⇒ Dx. Given C-transformations 
ϑ: D ⇒ E and ς: E ⇒ F , their composite ςϑ: D ⇒ F has components

Dx

B(Dx,Ex)

Ex

Fx

B(Ex,Fx) B(Dx,Fx)
ϑ

ς

m

.

(Observe that the C-transformations induced by C-icons are stable under this composi-
tion.) This defines the hom-category Catκ(C)(A, B).

Suppose now that D: A → B and E: B → C are C-functors; we take their composite 
ED: A → C to have action on objects (ED)(x) = E(Dx), 1-cell components given by 
(ED)x = EDx ◦Dx: εx → ε(EDx), and 2-cell components (ED)xy given by

Dx

A(x,y) Dy

B(Dx,Dy)D

EDx

EDy

C(EDx,EDy)E .

Given C-transformations ς: E ⇒ E′ and ϑ: D ⇒ D′, we define the whiskerings ςD: ED ⇒
E′D and Eϑ: ED ⇒ ED′ to have respective components

E′
Dx

C(EDx,E′Dx)
EDx

Dx

Dx

ς

and

D′
x

B(Dx,D′x)
EDx

ED′x

C(EDx,ED′x)

Dx
ϑ

E .

It is easy to verify that these whiskering operations satisfy the middle-four interchange 
law, so yielding a composition functor Catκ(C)(B, C) ×Catκ(C)(A, B) → Catκ(C)(A, C). 
The identity C-functor on a C-category A is the identity on objects, has 1-cell components 
1εx: εx → εx, and 2-cell components obtained from left and right unit constraints in Cλ.

It remains to give the associativity and unitality constraints making Catκ(C) into 
a bicategory. Given a triple (C, D, E) of composable C-functors, we observe that the 
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composites (ED)C and E(DC) agree on objects, and differ in their 1-cell components 
only by associativity constraints in Cτ ; these constraints constitute the components of an 
invertible C-icon (ED)C ⇒ E(DC), from which we induce the C-transformation giving 
the associativity constraint for Catκ(C) at (C, D, E). The left and right unit constraints 
are obtained similarly from left and right unit constraints in Cτ ; the pentagon and unit 
axioms are now easily verified using the corresponding axioms in Cτ together with the 
closure of C-icons under composition. This completes the definition of the bicategory 
Catκ(C). Note that if Cτ is a 2-category—which it will be in many of our examples—then 
so too is Catκ(C).

As in Section 15.6, we have for each object v ∈ Cτ the κ-ary C-category v̂ with one 
object 
 such that ε(
) = v and v̂(v, v) = 1v. Each tight morphism f : v → w induces a 
C-functor f̂ : ̂v → ŵ that is the identity on objects, with 1-cell component f̂� = f and 
2-cell component f̂�� built from unit constraints in Cλ. Similarly, each 2-cell α: f ⇒ g

of Cτ induces a C-icon f̂ ⇒ ĝ with unique component α, whence a C-transformation 
α̂: f̂ ⇒ ĝ. These data assemble to give a functor ˆ(–): Cτ → Catκ(C).

16.6. Example. Let C be the inchordate equipment on the delooping of a monoidal cat-
egory V; then Catκ(C) is the 2-category of (κ-small) V-enriched categories, V-functors 
and V-transformations. More generally, if C is the inchordate equipment on any bicat-
egory, then the notions of C-category, C-functor and C-transformation as defined above 
coincide with those defined for bicategories in, for example, [36].

16.7. Example. Let C be a category with pullbacks, and consider the equipment Span(C)
given by the functor C → Span(C) that sends f : x → y to the span 1x: x ← x → y: f . 
Then {1}-ary Span(C)-categories are internal categories in C, as in Example 15.3, and 
Cat{1}(Span(C)) is the 2-category of internal categories, functors and transformations 
in C. The embedding ˆ(–) is the “discrete internal category” functor.

16.8. Example. On the other hand, if C is the chordate equipment on the delooping of a 
monoidal category V, then Catκ(C) is the bicategory of V-categories, Mealy morphisms, 
and Mealy cells as described in [28]. We may extend this terminology more generally to 
any chordate equipment. For instance, if C is the chordate equipment on the bicategory 
of spans in a category C with pullbacks, then the objects of Cat{1}(C) are internal 
categories as in Example 16.7, while its morphisms can be identified with spans of internal 
categories whose source leg is a discrete opfibration.

16.9. The equipment of C-categories

We call an equipment C locally κ-cocomplete if Cλ is so. In this case, we have as 
in Section 15.6, a locally κ-cocomplete bicategory Modκ(Cλ) whose objects are also 
κ-ary C-categories, but whose morphisms are modules. We will combine Catκ(C) and 
Modκ(Cλ) into a (locally κ-cocomplete) equipment.
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Firstly, if D: A → B is a C-functor, we have an A-B-module with 1-cell components 
B(u, Dx) ◦Dx ∈ Cλ(εx, εu), and with A- and B-actions given by

B(u,Dx)

B(Dx,Dy)
Dy

Dx

A(x,y)

B(u,Dy)
m

D and B(v,Dx)

B(u,v)
B(u,Dx)

Dx

Dx

ς

respectively. We denote this A-B-module by B(1, D), and call a module representable
when it is isomorphic to one of this form. Now if E: A → B is another C-functor 
and ϑ: D ⇒ E is a C-transformation, then we have an A-B-module morphism 
B(1, ϑ): B(1, D) → B(1, E) with components

Ex

B(Dx,Ex)

Dx

B(u,Dx) B(u,Ex)

ϑ

m .

On the other hand, any A-B-module morphism f : B(1, D) → B(1, E) induces a 
C-transformation ϑ: D ⇒ E with components

Dx

B(Dx,Dx) B(Dx,Ex)

Ex

j

f

.

These two operations are mutually inverse and respect composition, whence we have for 
each A and B a fully faithful functor B(1, –): Catκ(C)(A, B) → Modκ(Cλ)(A, B).

It is clear that the image B(1, 1B) of the identity C-functor 1B: B → B is isomorphic, 
via unit constraints in Cλ, to the identity module on B. Moreover, if we have C-functors 
D: A → B and E: B → C, then there is a split coequaliser diagram

∑
u,v C(w,Eu)◦Eu◦B(u,v)◦B(v,Dx)◦Dx

∑
u C(w,Eu)◦Eu◦B(u,Dx)◦Dx C(w,EDx)◦EDx◦Dx,

wherein both leftwards-pointing arrows factor through the coprojection labelled by 
u := Dx via the morphism j: 1ε(Dx) → B(Dx, Dx). It follows that C(1, ED), whose 
1-cell components are the target of this split coequaliser, is isomorphic to the compos-
ite C(1, E) ◦ B(1, D) in Modκ(Cλ). We have now described the action on homs and 
the nullary and binary functoriality constraints of a functor Jκ: Catκ(C) → Modκ(Cλ); 
the corresponding coherence axioms are straightforward to verify. Clearly, Jκ is locally 
fully faithful and bijective on objects, and, since Cλ is locally κ-cocomplete, so also is 
Modκ(Cλ); and so we have described a locally κ-cocomplete equipment, which we denote 
by Modκ(C).
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Given a tight morphism f : v → w, we have the C-functor f̂ : ̂v → ŵ inducing the 
v̂-ŵ-module ŵ(1, f̂) with ŵ(1, f̂)(
, 
) = 1w ◦ f . On the other hand, the loose morphism 
underlying f induces directly the isomorphic v̂-ŵ-module f̂ with f̂(
, 
) = f , and so we 
have a morphism of equipments ˆ(–): C → Modκ(C) as displayed in the square

16.10. Locally κ-cocomplete equipments via enrichment

We shall now show that the equipment morphism ˆ(–): C → Modκ(C) exhibits Modκ(C)
as the free completion of C under a suitable class of enriched bicolimits. In this section, we 
construct the base for enrichment: a monoidal bicategory Fκ such that Fκ-bicategories 
are locally κ-cocomplete equipments.

We begin by applying Theorem 14.2 to the forgetful functor R: Colimκ → Cat from 
Section 15.8. This yields a complete and cocomplete monoidal bicategory (Cat ↓ R), 
whose objects A are functors jA: Aτ → Aλ such that Aλ is κ-cocomplete. Now let Fκ

denote the full subcategory of (Cat ↓ R) on the fully faithful functors. Such functors 
are the right class of the (essentially surjective on objects, fully faithful) factorisation
system on Cat; thus Fκ is a reflective sub-bicategory of (Cat ↓ R) and hence complete 
and cocomplete. Bilimits in Fκ are constructed as in (Cat ↓ R), which is to say that we 
take bilimits of the tight and loose parts separately (with limits in Colimκ, as usual, 
created by R). Bicolimits in Fκ are computed by taking bicolimits of the tight and loose 
parts separately, then applying the reflector, which is the (essentially surjective, fully 
faithful) factorisation.

Now the class ⊥Fκ of morphisms sent to equivalences by the reflector (Cat ↓ R) → Fκ

comprises all morphisms

Aτ

fτ

j ∼=

Bτ

j

Aλ
fλ

Bλ

for which fλ is an equivalence in Colimκ, and for any b ∈ Bτ there exists a ∈ Aτ such 
that fλ(j(a)) ∼= j(b). ⊥Fκ is closed under the monoidal product of (Cat ↓ R), and so by 
Theorem 14.5, Fκ inherits a monoidal structure from (Cat ↓ R) which is both symmetric 
and closed. Its right hom can be computed as the pullback:
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[B,C]τ
j[B,C]

[B,C]λ

[Bλ, Cλ]κ

[jB ,1]

[Bτ , Cτ ]
[1,jC ]

[Bτ , Cλ].

Here [Bλ, Cλ]κ denotes the right hom of Colimκ, i.e. the category of κ-cocontinuous 
functors Bλ → Cλ.

We have forgetful functors Uτ : Fκ → Cat and Uλ: Fκ → Colimκ, of which Uτ

is lax monoidal and Uλ is strong monoidal. By Theorems 14.2 and 14.5, to give an 
Fκ-bicategory is equally to give a bicategory Cτ , a locally κ-cocomplete bicategory Cλ, 
and an identity-on-objects and locally fully faithful functor JC: Cτ → Cλ; in other words, 
a locally κ-cocomplete equipment. Similarly, to give an Fκ-functor C → D is equally to 
give a morphism of equipments whose loose part is locally κ-cocontinuous; and so on.

We may repeat the above arguments replacing R: Colimκ → Cat by the identity func-
tor Cat → Cat; on doing so, we obtain a monoidal bicategory F such that F-bicategories 
are equipments subject to no local cocompleteness requirements. This is just the bicat-
egorical version of the F-categories of [23]; our bicategory F is not identical to their 
2-category F , but is chosen to make our F-bicategories related to their F-categories in 
the same way that ordinary bicategories are related to strict 2-categories. There is an 
evident lax monoidal forgetful functor U : Fκ → F , such that U computes the under-
lying F-bicategory of an Fκ-bicategory; and in fact, this U forms part of a monoidal 
biadjunction.

16.11. Proposition. The forgetful functor U : Fκ → F admits a strong monoidal left ad-
joint H.

Proof. We define H applied to a fully faithful functor Aτ → Aλ to be the composite 
Aτ → Aλ

η−→ RLAλ, where L � R denotes the adjunction Cat � Colimκ as usual. 
Since RLAλ can be identified, up to equivalence, with the closure of Aλ in its presheaf 
category under the appropriate colimits, the adjunction unit η is fully faithful and thus 
H lands in Fκ. The adjunction H � U is easy to check.

Finally, given Aτ → Aλ and Bτ → Bλ, we have LAλ ⊗ LBλ
∼= L(Aλ ×Bλ) since L is 

strong monoidal. Thus Aτ ×Bτ → R(LAλ ⊗LBλ) is already fully faithful, and hence is 
HA ⊗HB, which is therefore equivalent to H(A ×B). �

Since F and Fκ are closed and complete and U : Fκ → F creates bilimits, it follows 
from Theorem 13.13 that any F-weight W gives rise to an Fκ-weight HW , with the 
property that an HW -weighted colimit in an Fκ-bicategory C is nothing more or less 
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than a W -weighted colimit in the underlying F-bicategory of C. We shall use this fact 
shortly.

16.12. Tight collages

We will now describe the kinds of Fκ-enriched colimits under which the locally 
κ-cocomplete equipment C is to be completed to obtain Modκ(C). As before, we first 
give an elementary presentation of these colimits. Given a locally κ-cocomplete equip-
ment and a κ-ary C-category A, a tight collage of A is given by an object v ∈ C that 
birepresents both functors

Catκ(C)(A, ˆ(–)): Cτ → Cat and Modκ(Cλ)(A, ˆ(–)): Cλ → Cat

in a compatible manner. By this, we mean that there are given universal elements Tτ ∈
Catκ(C)(A, ̂v) and Tλ ∈ Modκ(Cλ)(A, ̂v)—thus in particular, Tλ exhibits v as the collage 
of A in Cλ—such that Tτ is a tightening of Tλ. Observe that a tight collage (Tτ , Tλ) is 
determined to within unique isomorphism by Tλ for which there exists some such Tτ . 
More precisely, a collage Tλ for A forms part of a tight collage if and only if:

(i) Tλ admits a tightening;
(ii) Tλ detects tightness: which is to say that, given f : v → w in Cλ and a diagram

in Modκ(C), if U admits a tightening, then so does f .

From the definitions of C-functor and C-module, we see that tightenings of an 
A-v̂-module T are the same as tightenings for each coprojection T (
, x): εx → v in Cλ. 
Hence, arguing as in Section 15.9, a tight collage for A is equally a tight lax colimit for 
A: ∇O → Cλ, amounting to a universal oplax cocone T : A ⇒ Δv in Cλ whose components 
come equipped with tightenings and jointly detect tightness. It follows that the notion of 
tight collage, which was defined only for locally κ-cocomplete equipments, in fact makes 
sense for any equipment.

The special cases are again worth mentioning:

16.13. Example. If obA is a singleton, so that A is a (loose) monad as in Example 15.10, 
then a tight collage of A is determined by a (loose) Kleisli object whose coprojection 
admits a tightening and detects tightness.
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16.14. Example. If O is a κ-small set and A is constructed from an O-indexed set of 
objects in C, as in Example 15.11, then a tight collage of A is simply a coproduct in Cτ
that is preserved by JC: Cτ → Cλ.

16.15. Remark. Let C be a locally κ-cocomplete bicategory, and let C̃ be the locally 
κ-cocomplete equipment with C̃λ = C and C̃τ its locally full sub-bicategory consisting 
exactly of the maps. Then the first halves of Theorem 15.15(1) and (2) say exactly 
that all collages in C underlie tight collages in C̃. Conversely, suppose that C is a map 
equipment (recall that this means that every tight morphism is a map). Then a tight 
collage in C automatically satisfies the first half of Theorem 15.15(1) and an F-analogue 
of the first half of (2). In [40], the existence of (finite) coproducts and Kleisli objects 
with these properties were taken as additional axioms for proarrow equipments.

Inspecting the proof of our Theorem 15.12(1) in [35, Proposition 2.2(a)], we see that 
if it is carried out using tight collages, then the resulting lax colimits will also be tight. 
This proves:

16.16. Theorem. If C is a locally κ-cocomplete equipment, then the following are equiva-
lent.

(1) C admits tight lax colimits of lax functors into Cλ with κ-small domain.
(2) C admits tight κ-ary collages.
(3) C admits tight Kleisli objects and tight κ-small coproducts.

16.17. Tight collages as Fκ-colimits

We now exhibit tight collages as Fκ-weighted colimits. We do so by first exhibiting 
them as F-weighted colimits and then transporting across the monoidal biadjunction 
F � Fκ. To do that, we need to examine the notion of F-weighted colimit in more 
detail.

The same argument that identifies an F-bicategory B with a functor JB: Bτ → Bλ

shows that a right B-module W can be identified with a right Bτ -module Wτ , a right 
Bλ-module Wλ, and a pointwise fully faithful Bτ -module morphism JW : Wτ → Wλ(JB). 
If C is another F-bicategory, F : B → C an F-functor, and v ∈ ob C, then a cylinder 
ϕ: W → C(F, v) consists of transformations ϕτ : Wτ → Cτ (Fτ , v) and ϕλ: Wλ → Cλ(Fλ, v)
together with an invertible modification
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Since JC is locally fully faithful, such a cylinder is determined up to unique isomorphism 
by ϕλ for which there exists some such ϕτ . Thus, to give ϕ is equally to give a transforma-
tion ϕλ: Wλ → Cλ(Fλ, v) such that for every a ∈ Wτ (x), the morphism ϕ(a): F (x) → v

comes equipped with a chosen tightening. Thus, arguing as in Proposition 3.6 of [23], we 
conclude that:

16.18. Proposition. For B, C, W, F, v as above, a W -weighted colimit of F is given by a 
Wλ-weighted colimit ϕ: Wλ → Cλ(Fλ, v) of Fλ such that the morphisms

{ϕ(a):F (x) → v | x ∈ obB and a ∈ Wτ (x)}

come equipped with tightenings and jointly detect tightness.

Now given O a κ-small set, let O� be as in Section 15.9, and let O be the inchordate 
equipment on O�. In O, only identity morphisms are tight, and so any functor O� → Cλ
preserves tightness, and as such, admits an essentially-unique extension to an F-functor 
O → C. Let VO be the right O�-module from Section 15.9 such that VO-weighted colimits 
are collages. For each x ∈ O there is a distinguished “generating” element px ∈ VO(x), 
such that in a VO-weighted cylinder the images of the px’s are the coprojections. From 
these, we obtain a morphism of right Oτ -modules

〈px〉:
∑
x∈O

Oτ (–, x) → J∗
O(VO),

and taking the second half of the pointwise (bijective on objects, fully faithful) factorisa-
tion of this, we obtain a right O-module ṼO. By Proposition 16.18, a ṼO-weighted colimit 
of O → C is precisely a tight lax colimit of the corresponding A: ∇O → Cλ.

Letting W̃O = H(ṼO), where H is the free-κ-cocomplete-equipment functor from 
Proposition 16.11, it follows from Theorems 16.16 and 13.13 that a locally κ-cocomplete 
equipment admits tight collages of κ-ary categories if and only if, when regarded as a 
Fκ-bicategory, it is Φ̃κ-cocomplete for the class of weights Φ̃κ = {W̃O | O a κ-small set}.

Our aim now is to show that Modκ(C) � Φ̃κ(C). First we need an F-analogue of 
Section 15.17.

16.19. Tight collages in Fκ

Since Fκ is a right closed monoidal bicategory, we can regard it as enriched over 
itself, hence as a locally κ-cocontinuous equipment. A loose morphism in Fκ from Aτ →
Aλ to Bτ → Bλ is a κ-cocontinuous functor Aλ → Bλ, while a tight morphism is a 
pseudo-commutative square
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Aτ

∼=
Bτ

Aλ Bλ

in which the lower arrow is κ-cocontinuous. Regarding Fκ as an equipment in this way, 
let A be an Fκ-category. Thus, it consists of objects x with extents εx ∈ Fκ, together 
with κ-cocontinuous functors A(x, y): (εy)λ → (εx)λ making its loose part Aλ into a 
Colimκ-category as in Section 15.17. Then its tight collage ‖A‖ is, in particular, a collage 
in (Fκ)λ. Since (Fκ)λ is equivalent to Colimκ, the loose part ‖A‖λ of ‖A‖ is just the 
ordinary collage |Aλ| as described in Section 15.17.

We claim that the rest of ‖A‖ admits the following description. The set of objects of 
‖A‖τ is the disjoint union of the objects of the categories (εx)τ . A morphism in ‖A‖τ
from ω ∈ (εx)τ to � ∈ (εy)τ is a morphism ω → A(x, y)(�) in (εx)τ . When A has one 
object, this is just the ordinary Kleisli category of a (κ-cocontinuous) monad (i.e. the 
Kleisli object in Cat, as opposed to the Kleisli object in Colimκ, which as we have seen 
is the ordinary Eilenberg–Moore category). In the general case, this describes precisely 
the collage of A regarded as a Cat-category (i.e. forgetting the fact that the functors 
A(x, y) are κ-cocontinuous). In particular, we have coprojections (εx)τ → ‖A‖τ for all 
x ∈ obA.

The functor j‖A‖: ‖A‖τ → ‖A‖λ sends an object ω ∈ (εx)τ to the tuple (ξz :=
A(z, x)(ω))z, and sends a morphism ω → A(x, y)(�) to the tuple of composites

j‖A‖(ω)z = A(z, x)(ω) −→ A(z, x)(A(x, y)(�)) −→ A(z, y)(�) = j‖A‖(�)z.

When A has one object, this is just the ordinary inclusion of the Kleisli category of a 
(κ-cocontinuous) monad into its Eilenberg–Moore category, which is well-known to be 
fully faithful; the general case is fully faithful for the same reason. The desired universal 
property for ‖A‖ follows by combining the universal property of ‖A‖τ , as a collage in 
Cat, with that of ‖A‖λ, as a collage in Colimκ.

16.20. Remark. By Theorem 15.15, a tight collage of a C-category A may be equivalently 
characterised as a functor R: A → v̂ whose underlying module is an equivalence (i.e. R is 
a “Morita equivalence”) and which “detects representability of modules”. In particular, 
if C has tight κ-ary collages, then the inclusion ˆ(−): C → Modκ(C) of F-bicategories has 
a left F-biadjoint. Once we show that Modκ(C) has tight κ-ary collages, the converse 
will follow, since a left F-biadjoint must preserve F-colimits such as tight collages.

The following lemma says that the construction Modκ preserves map equipments.

16.21. Lemma. If D: A → B is a C-functor such that each morphism Dx has a loose right 
adjoint, then B(1, D) has a loose right adjoint in Modκ(C). In particular, if C is a map 
equipment, then so too is Modκ(C).
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Proof. Write D∗
x for the right adjoint of Dx. We define an A-B module B(D, 1), whose 

1-cell components are D∗
x ◦B(Dx, u). The rest of the structure is completely dual to that 

of B(1, D), and the adjunction B(1, D) � B(D, 1) is easy to check. �
16.22. Theorem. For any Fκ-bicategory C, the free cocompletion of C under tight κ-ary 
collages is equivalent to Modκ(C).

Proof. As in Theorem 15.18, the desired free cocompletion is the closure of C in MC
under tight κ-ary collages, which contains the full sub-F-bicategory of MC whose objects 
are tight collages of the image of some κ-ary C-category. We will show that the latter is 
equivalent to Modκ(C) and that it is closed in MC under tight κ-ary collages, and hence 
coincides with the desired closure.

We proceed exactly as in Theorem 15.18, considering the equivalent Fκ-bicategory 
whose objects are literally the κ-ary C-categories. For A a κ-ary C-category, the tight 
collage ‖Y A‖ of its image in MC can be defined by

‖Y A‖(c) := ‖C(c,A)‖.

Here C(c, A) is an Fκ-category that enhances Example 15.5 in an obvious way, while ‖–‖
denotes its collage in Fκ.

Now suppose A and B are two κ-ary C-categories. By the universal property of collages, 
a loose morphism ‖Y A‖ → ‖Y B‖ in MC is determined by a lax cocone of loose morphisms 
under Y A with vertex ‖Y B‖, i.e. by a collection of loose right C-module morphisms 
Y (εx) → ‖Y B‖, for x ∈ obA, together with associative module transformations. By the 
Yoneda lemma, a loose right C-module morphism Y (εx) → ‖Y B‖ is uniquely determined 
by a loose object of ‖Y B‖(εx) = ‖C(εx, B)‖. Since we saw in Section 16.19 that the loose 
parts of tight collages in Fκ are simply collages in Colimκ, the proof of Theorem 15.18
carries all the way through to show that the bicategory of loose morphisms is equivalent 
to Modκ(Cλ).

On the other hand, a tight morphism ‖Y A‖ → ‖Y B‖ is determined by the same data 
such that each right C-module morphism Y (εx) → ‖Y B‖ is tight, or equivalently that 
the corresponding object of ‖C(εx, B)‖ is tight. By Section 16.19 and the definition of 
C(εx, B), a tight object of ‖C(εx, B)‖ consists of an object of B—call it, say, Dx—together 
with a tight morphism εx → ε(Dx)—call it, say, Dx.

The additional data of a tight morphism ‖Y A‖ → ‖Y B‖ consists of, for each x, y ∈
obA, a morphism from (Dx, Dx) to (Dy, Dy) in ‖C(εx, B)‖τ . By Section 16.19 and the 
definition of C(εx, B), such a morphism consists of a 2-cell Dx → B(Dx, Ex) ◦ Ex in C. 
The associativity of these morphisms reduces exactly to the axioms of a C-functor. (This 
is the same argument used in [24] for the case κ = {1}.)

Finally, the description of j‖C(εx,B)‖ in Section 16.19 identifies it exactly with the 
operation D �→ B(1, D) described in Section 16.9. Thus, a morphism ‖Y A‖ → ‖Y B‖ in 
MC admits a tightening exactly when the corresponding A-B-module is representable. 
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This is sufficient to identify the “one-step” closure of C in MC under tight κ-ary collages 
with Modκ(C).

It remains to show that Modκ(C) is closed in MC under tight κ-ary collages, so 
that this “one-step” closure is in fact the full closure. This is proved in the following 
lemma. �
16.23. Lemma. Let C be an Fκ-bicategory. Let B be a κ-ary C-category and S: B → v̂

a tight collage. For each x ∈ obB, let Ax be a κ-ary C-category and Rx: Ax → ε̂x a 
tight collage. Then there is a κ-ary C-category A with object set 

∑
x∈ob B obAx, and with 

extents induced from those of each Ax, whose tight collage is v̂.

Proof. Note that since Rx is a (tight) collage, each tight coprojection Rz: εz → εx, for 
z ∈ obAx, is a map in Cλ. We denote its (loose) right adjoint by R∗

z. Now the objects 
and extents of A are given; for z ∈ obAx and w ∈ obAy, we define

A(z, w) := R∗
z ◦ B(x, y) ◦Rw.

Then A is a κ-ary C-category, with structure morphisms induced by those of B and the 
units and counits of the adjunctions Rz � R∗

z . The adjunct morphisms to the definition 
of A(z, w):

Rz ◦ A(z, w) −→ B(x, y) ◦Rw

make R into a C-functor A → B. Since each Rz is a map, by Lemma 16.21, the B-A-module 
B(1, R) has a right adjoint B(R, 1). The usual split-coequaliser arguments show that 
B(1, R) and B(R, 1) are inverse equivalences in Modκ(C). However, by Theorem 15.15, 
S (or equivalently v̂(1, S)) is also an equivalence from B to v̂. Thus, the composite functor 
SR is equivalence from A to v̂, and hence is a loose collage.

It remains to prove the tight part of the universal property. Suppose g: v → w is a 
loose morphism in C. Since S is a tight collage, g is tight if and only if gSx is tight for 
each x ∈ obB. But since Rx is a tight collage, gSx is tight if and only if gSxRz is tight 
for each z ∈ obAx. Thus, g is tight if and only if each gSxRz is tight. �
16.24. Remark. Suppose that we wanted to let A(x, y) denote a morphism in C from 
εx to εy, rather than the reverse, as we have done. Then in order for C-transformations 
to reduce to their usual meaning in examples, a C-transformation D ⇒ E would have 
to involve a 2-cell Ex → B(Dx, Ex) ◦Dx rather than Dx → B(Dx, Ex) ◦ Ex. However, 
there seems no way to reverse the order of D and E in the 2-cells of a free cocompletion. 
Thus, in order for Theorem 16.22 to hold, we are essentially forced to take A(x, y) to be 
a morphism from εy to εx.
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16.25. Remark. By Theorem 16.16, Modκ(C) also has all tight lax colimits of lax functors 
into Cλ with κ-small domain. Thus, as in Remark 15.20, we can conclude that it is also 
the free cocompletion of C under such tight lax colimits.

16.26. Remark. As in Remark 15.21, we have Modκ(C) � Mod{1}(Matrκ(C)), where 
Matrκ(C) is the free cocompletion of C under tight κ-small coproducts. Its loose bicat-
egory is Matrκ(Cλ) as in Remark 15.21, while a tight morphism from ε1: O1 → ob C to 
ε2: O2 → ob C consists of a function D: O1 → O2 and tight morphisms Dx: ε1x → ε2(Dx).

16.27. Remark. There are various other similar monoidal bicategories for which we could 
consider analogous free cocompletions. For instance, if we used F-bicategories—that 
is, mere equipments without any local cocompleteness—then the free cocompletion of 
an equipment C under tight collages would consist of C-categories, C-functors, “C-Mealy 
morphisms”, and Mealy cells, as in Example 16.8. And if we used Cat-bicategories—that 
is, ordinary bicategories—then the free cocompletion under collages would consist of 
C-categories, C-Mealy morphisms, and Mealy cells.

The latter, in the case κ = {1}, is precisely what was observed in [24]. Thus, from the 
starting point of [24], the main observations of the second part of the current paper are 
that (1) by using equipments instead of bicategories, we can recover functors exactly as 
the tight morphisms in the free cocompletion, and (2) by including local cocompleteness 
in the enrichment, we can recover the more common and useful notion of modules, instead 
of Mealy morphisms, as the (loose) morphisms in the free cocompletion.
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