
Developing a Black Box Specification in Controlled English

Rolf Schwitter
Centre for Language Technology

Macquarie University
Sydney, NSW 2109, Australia
schwitt@ics.mq.edu.au

Abstract

This paper presents a controlled nat-
ural language (PENG - Processable
ENGlish) and suggests a dialog-driven
method for developing a Black Box
specification from behavioral require-
ments written in that controlled lan-
guage. Such a Black Box specifica-
tion can be developed in an interactive
and systematic way through the process
of sequence enumeration. The strength
of sequence enumeration is that it re-
quires the domain specialist to consider
all possible types of interaction with the
future system. The process of sequence
enumeration results in a complete and
consistent specification that is traceable
to its requirements and gives the do-
main specialists and software engineers
a clear picture of what to do in all cir-
cumstances of use.

1 Introduction

It can be very cumbersome to describe the total
behavior of a complex software system because
of the vast number of possible uses of the future
system. Neither is it clear what kind of language
should be used to describe the behavioral require-
ments so that a specification can be derived in
a systematic way from these requirements (Jack-
son, 1995; Fuchs et al., 1998).

Natural languages are one possibility: They
are most familiar to domain specialists and do
not need to be learned. Domain specialists can

express their needs in terms that are well estab-
lished in the application domain. However, re-
quirements written in full natural language are in-
herently ambiguous, sometimes vague and there-
fore very difficult to process automatically.

Formal languages are another possibility: They
are the preferred choice of software engineers
since formal languages are precise, unambiguous
and machine-processable. But formal languages
are difficult to learn and to understand especially
for domain specialists since requirements are then
very often written in an opaque manner that ab-
stracts away all considerations of a particular ap-
plication domain.

It seems that we are trapped between the dis-
advantages of full natural language and the dis-
advantages of formal languages. But there is a
way out of this quandary: controlled natural lan-
guages.

A controlled natural language is a subset of a
natural language that has been restricted with re-
spect to its grammar and its lexicon. Grammat-
ical restrictions result in less complex and less
ambiguous sentences. Lexical restrictions reduce
the size of the vocabulary and the meaning of the
lexical entries for a particular application domain.
These restrictions make the requirements easier to
read and to understand for humans and easier to
process for machines (Pulman, 1996; Schwitter,
1998; Fuchs et al., 1998; Grover et al., 2000).

We have designed and implemented PENG,
a computer-processable controlled natural lan-
guage (Schwitter, 2002). PENG covers a well-
defined subset of standard English and is pre-
cisely defined by a controlled grammar and a con-

trolled lexicon. The controlled language con-
tains domain specific content words and prede-
fined function words. The domain specialist does
not need to learn and to remember the restrictions
of the controlled language. A look-ahead text ed-
itor displays and enforces the restrictions while
the requirements are written. Specifications in
PENG are deterministically parsed and translated
into discourse representation structures (Kamp
and Reyle, 1993) with the help of a unification-
based parser (Covington et al., 1988; Schwitter,
2002).

Once a set of requirements has been described
in PENG, we need a method that helps us to dis-
cover the completeness and consistency of our de-
scription. One way to check for potential incon-
sistency in a text is the use of an automated the-
orem prover. Such a theorem prover can be used
in combination with a model builder that gener-
ates first-order models and thereby reveals consis-
tency of the text (Bos, 2001; Schwitter, 2002). Al-
though very promising, this approach has not yet
been applied to larger texts and scalability with
respect to inference is an open issue.

In this paper we are going to investigate an
alternative (but less powerful) technique that is
known as sequence enumeration (Mills, 1988;
Prowell, 1999). Sequence enumeration is a the-
oretically sound and highly practical approach to
describe the external behavior of a system in such
a way that the result is traceable to the require-
ments. This approach considers all permutations
of input stimuli to a system and maps them to a
response given a prior history. When a sequence
of stimuli is noted as equivalent to a previously
enumerated sequence by an observer then the cur-
rent sequence can be reduced to the previous se-
quence. This enumeration process forms a reduc-
tion system that must always end otherwise the
future program may never terminate.

Since requirements are automatically trans-
lated into discourse representation structures, re-
quirements that are found not to be complete or
consistent with the expected behavior of the sys-
tem can be interactively refined during the se-
quence enumeration process. The strength of se-
quence enumeration is that this technique requires
the domain specialist to consider obscure behav-
ioral sequences that are usually overlooked and

not described in the specification.
The remainder of this paper is organized as fol-

lows: In Section 2, we introduce the language
PENG and discuss briefly the most important
grammatical and lexical constraints of this con-
trolled natural language. In Section 3, we show
how domain specialists can write down require-
ments using a look-ahead editor and how this edi-
tor constrains the admissible syntactic structures
and checks for approved words. In Section 4,
we discuss how PENG sentences are processed
and translated into discourse representation struc-
tures. In Section 5, we describe how the sug-
gested sequence enumeration module (SEQENU)
of PENG works using as an example a soda ma-
chine. Finally, in Section 6, we summarize the
advantages of the presented approach.

2 PENG - Basic Concepts

PENG is a computer-processable controlled lan-
guage specifically constructed to write specifica-
tions and use cases. PENG is made up of a strict
subset of standard English. The restrictions of the
language are defined with the help a controlled
grammar and a controlled lexicon.

We can give here only a short overview of
PENG. For a detailed description of the language
please refer to (Schwitter, 2002).

2.1 Controlled Lexicon

The lexicon of PENG consists of predefined func-
tion words (determiners, conjunctions, preposi-
tions), a set of illegal words (especially inten-
sional words), and user-defined content words
(nouns, verbs, adjectives, adverbs). The content
words are incrementally added or modified by the
domain specialist during the specification process
with the help of a lexical editor - a software tool
that guides the input of new words. Thus, by
adding content words, authors create their own
application specific lexicon. In addition, authors
can define synonyms, acronyms, and abbrevia-
tions for nouns using the lexical editor.

2.2 Controlled Grammar

The controlled grammar defines the structure of
simple PENG sentences and states how simple
sentences can be joined into complex sentences
by coordinators and subordinators. Verbs can

only be used in the simple present tense, the active
voice, the indicative mood, and the third person
singular (or plural) and denote events or states.
The grammar also specifies that simple sentences
have a strictly linear temporal order and that they
can be anaphorically interrelated in a well-defined
way to build coherent textual structures.

In the context of a soda machine simple PENG
sentences might look as follows:

The soda machine accepts dollars.

The user enters a dollar.

Every user enters a dollar.

No user enters a dollar.

The user does not enter a dollar.

The user enters three dollars one by one.

Simple sentences can be combined by coordi-
nators (and, or) and subordinators (if, after, be-
foreandwhile):

If the operator starts up the soda machine
and the user enters three dollars and selects
the Soda button then the machine produces a
soda.

After the operator starts up the soda ma-
chine, the machine turns on the Power light.

In PENG only definite noun phrases and proper
nouns can be used anaphorically while personal
pronouns are not allowed since their resolution is
difficult to control. Here is an example of an ad-
missible anaphoric structure in PENG:

If the user enters three dollars one by one
then the soda machine produces a soda. The
machine accepts dollars only.

In the above sentence the definite noun phrase
the machinehas the noun phrasethe soda ma-
chine as antecedent. In PENG the result of
the anaphora resolution process is indicated by a
paraphrase. After processing, the second sentence
is displayed as

{The soda machine} accepts dollars only.

As the example shows, the system replaces the
anaphoric expression by the complete antecedent
and mirrors the interpretation.

3 Writing PENG with ECOLE

In contrast to Attempto Controlled English
(Schwitter, 1998; Fuchs et al., 1999), the au-
thor does not need to know the grammar rules
of the controlled language explicitly. PENG uses
ECOLE, a look-ahead editor that indicates af-
ter each word form entered what kind of syntac-
tic construction the author can use next. In this
way the author is guided and the cognitive burden
to learn and remember the grammar rules of the
controlled language disappears. From a broader
theoretical perspective, this look-ahead technique
does not only generate and guarantee well-formed
expressions but also provides the necessary struc-
tural basis for the semantic interpretation of the
controlled language in a completely composi-
tional manner.

The look-ahead editor uses the grammatical
rules of a definite clause grammar (DCG) and
the syntactic categories derived from these rules.
Currently we are experimenting with different
techniques to derive these look-ahead categories.
The simplest but most tedious way is to multiply
the DCG rules out and then to add the appropri-
ate look-ahead categories to the grammar rules by
hand. A more sophisticated solution is to trans-
late the initial DCG rules into the target format via
term expansion while the grammar is consulted or
compiled.

When the domain specialist starts typing the
sentenceThe user enters a dollar, ECOLE dis-
plays the following restrictions as subscripts in
angle brackets.

The[adjective | noun]

The user[relative clause | verb | negation]

The user enters[determiner | name] ...

This type of functionality is available for pro-
gramming languages in many modern software
development environments. Note that the au-
thor needs only minimal linguistic knowledge to
resolve these restrictions. The look-ahead cat-
egories can be easily implemented as hypertext
links in order to provide additional information
and examples that explain the meaning of the cat-
egories. Experienced PENG users may want to
switch off the look-ahead feature and rely on oc-
casional error messages if something goes wrong.

4 Processing PENG Sentences

Specifications written in PENG can be auto-
matically translated into discourse representation
structures (DRSs), the representations used in dis-
course representation theory (Kamp and Reyle,
1993). DRSs make it possible to encode informa-
tion contained in a multi-sentence discourse and
to deal with phenomena such as anaphoric refer-
ences and presuppositions. Each part of a PENG
sentence contributes some logical conditions to
the DRS using the preceding textual information
as context. We represent a DRS as a term of the
form drs(U,Con), whereU is a list of discourse
referents andCon is a list of conditions for these
discourse referents. To support our dialog-driven
method that we are going to use later in the se-
quence enumeration process, it is convenient to
add a pointer to each conditionConi in the (un-
resolved) DRS that refers to the sentence and the
surface string from which condition has been de-
rived. For example, the sentence

The user enters three dollars.

can be represented as

[A,B,C]

user(A)-[1,[2]]

event(C,enter(A,B))-[1,[3]]

cardinality(B,3)-[1,[4]]

dollar(B)-[1,[5]]

whereasA, B, C are discourse referents for the
conditions and the integers (2, 3, 4, 5) in the list
are the back pointers to the surface forms of the
first sentence (1).

5 An Example Black Box Specification

As an example, we will now consider a simple
soda machine and start from an incomplete set of
requirementsRi written in PENG that describe the
functional behavior of that soda machine. In the
following we will focus on the logic of the appli-
cation rather than on interface issues. However,
it is important to keep in mind that the user inter-
acts with the system in controlled language and
that she is guided by the look-ahead editor.

R1: If the user enters three dollars then the soda
machine produces a soda. The machine ac-
cepts dollars only.

R2: If the user selects the Change Return button
then the machine returns the change that is
in the input tray.

R3: If the machine detects that no soda is avail-
able then the machine turns on the Sold Out
light.

R4: After the operator starts up the soda ma-
chine, the machine turns on the Power light.

The above description provides a partial model
of the reactive behavior of the planned soda ma-
chine and looks similar to a set of production rules
with supplementary constraints (e.g.The machine
accepts dollars only). Once such a set of require-
ments is available in PENG, we can perform a
sequence enumeration to check whether these re-
quirements are consistent and complete with re-
spect to every possible observed stimulus to the
soda machine.

For this purpose let us first represent the soda
machine as a black box and list the set of all ob-
servable stimuli:

S1: The operator starts up the soda machine.

S2: The user enters a dollar.

S3: The user selects the Soda button.

S4: The user selects the Change Return button.

S5: The soda machine detects that no soda is
available.

Once we have collected these stimuli, we have
to describe the set of all observable responses (=
external actions) that the black box is emitting:

A1: The soda machine turns on the Power light.

A2: The machine produces a soda.

A3: The soda machine returns the change.

A4: The machine turns on the Sold Out light.

The sequence enumeration process starts by
evaluating a single stimulusSi in form of a hypo-
thetical questionQi to the soda machine and de-
termining the appropriate response for that ques-
tion. On the first level enumeration (Level 1) the
domain specialist (= user) answers each question
that is generated by SEQENU, the sequence enu-
meration module of PENG, separately.

With each questionQi the most suitable re-
quirementRi is traced and displayed. SinceQi

and the entire set of requirementsR1-R4 is trans-
lated into a discourse representation structure, the
most suitable requirement can be found by calcu-
lating the overlap of the conditions for the stimu-
lus Si in Qi that matches best with the conditions
of the available requirements.

If the user detects that the most suitable re-
quirement is not complete or consistent with the
expected observations in the environment then the
requirement can be modified and the result is as-
cribed to the stimulus under investigation.

Level 1

System

Q1: What happens if the operator starts up the
soda machine?

R4: After the operator starts up the soda ma-
chine, the soda machine turns on the Power
light.

User

A1: The soda machine turns on the Power light.

System

E1: Is there a shorter equivalent sequence?

User

J1: No.

Here the domain specialist assigns the response
(= external action)A1 to the hypothetical question
Q1 since she can trace the response back to the
requirementR4. After that, the SEQENU module
asks the user if there exists a shorter equivalent se-
quence for the stimulusS1: The operator starts up
the soda machinethat appears inQ1. Obviously,
the initial stimulus cannot be replaced by a shorter

stimulus (sequence) and therefore the user’s judg-
ment isNo in J1.

In the case of all other stimuli (S2-S5) on the
first enumeration level, the domain specialist does
not assign a response. For example, if the stimu-
lus S3 occurs inQ3, then the responseA0 is no
(Nothing) and the SEQENU module detects that
asking for a shorter equivalent sequence is self-
contradictory and therefore illegal.

System

Q3: What happens if the user selects the Soda
button?

R0: none

User

A0: Nothing.

System

E3: A shorter equivalent sequence is illegal.

The reason for this is that it is not possible for
the user of the soda machine to select the Soda
button successfully before the operator starts up
the soda machine.

The result from performing the first level enu-
meration is that the operator must start up the soda
machine before anything else can be done. The
SEQENU module must remember that this event
occurred so that the stimulusS1 can be used on
the second level of enumeration. In general, the
second level of enumeration uses all stimulus se-
quences that were not illegal or did not have a
shorter equivalent sequence on the previous enu-
meration level than the first stimulus in the se-
quence.

This is only the case for the stimulusS1. This
stimulus is combined with each of the possible
stimuli S1-S5 to the soda machine and a new set of
hypothetical questions is automatically generated
for the second level of enumeration (Level 2).

Level 2

System

Q6: What happens if the operator starts up the
soda machine and the operator starts up the
soda machine?

R4: After the operator starts up the soda ma-
chine, the machine turns on the Power light.

User

A0: Nothing.

System

E6: Is there a shorter equivalent sequence?

User

J6: The operator starts up the soda machine.

The first hypothetical question on the second
level of enumeration seems to be obscure at first
glance. However, if we want to specify the com-
plete behavior of the soda machine, then we have
to include such uses into our description. The ob-
server recognizes here that if the soda machine
receives a stimulusS1 followed by another stim-
ulus S1, then the soda machine reacts as if only
a single stimulusS1 was applied. Since there is
no new external response for that sequence, the
observer sets the stimulus sequenceS1 S1 to the
shorter stimulus inJ6.

In the next step on the second level the
SEQENU module asks what happens if the stim-
ulus S1 is followed by the stimulusS2: The user
enters a dollar.

System

Q7: What happens if the operator starts up the
soda machine and the user enters a dollar?

R1: If the user enters three dollars then the soda
machine produces a soda. The soda machine
accepts dollars only.

User

A0: Nothing.

System

E7: Is there a shorter equivalent sequence?

User

J7: No.

The two events inQ7 do not produce an exter-
nal action of the soda machine (the dollar coin is
in the input tray and no action has been triggered)
nor does a shorter equivalent sequence exist.

In the next step the user expresses that the se-
quenceS1 followed by the stimulusS3: The user
selects the Soda buttonproduces no response and
is equivalent to the sequenceS1 in terms of behav-
ior. Here no valid requirement forQ8 exists and
therefore the user adds a description of the behav-
ior for this situation inD8. Such derived require-
ments make explicit behavior which was omitted
from the initial requirements.

System

Q8: What happens if the operator starts up the
soda machine and the user selects the Soda
button?

R0: none

User

A0: Nothing.

D8: If the user selects the Soda button before the
user enters the correct change then the soda
machine does not respond.

System

E8: Is there a shorter equivalent sequence?

User

J8: The operator starts up the soda machine.

In the next step the sequenceS1 followed by
S4: The user selects the Change Return button
produces a clearly observable responseA3 and a
shorter equivalent sequence is possible.

System

Q9: What happens if the operator starts up
the soda machine and the user selects the
Change Return button?

R2: If the user selects the Change Return button
then the machine returns the change that is
in the input tray.

User

A3: The machine returns the change.

System

E9: Is there a shorter equivalent sequence?

User

J9: The operator starts up the soda machine.

In the last step of the second enumeration level
the user provides the response A4 and adds the
derived requirement D10 but no shorter equivalent
sequence can be found.

System

Q10: What happens if the operator starts up the
soda machine and the machine detects that
no soda is available?

R3: If the machine detects that no soda is avail-
able then the machine turns on the Sold Out
light.

User

A4: The machine turns on the Sold Out light.

D10: If the machine detects that no soda is avail-
able before the user selects the Soda button,
then the machine turns on the Sold Out light.

System

E10: Is there a shorter equivalent sequence?

User

J10: No.

Each sequence that does not have a sequence
that is illegal or does not have a shorter equiva-
lent sequence on the second level must be remem-
bered by the SEQENU module. For this purpose,
the stimuli in the hypothetical questionsQ7 and
Q10 must be remembered and will be used in the
next enumeration level.

This process continues until all observable
stimuli are eventually mapped to a shorter equiva-
lent sequence. The enumeration process must al-
ways end or the program to be built will not ter-
minate.

In our case the process finally terminates in step
28 on the fifth level (Level 5). The stimulus se-
quenceS1 S2 S2 S2 S3 will produce the required
responseA2: The machine produces a soda.

Level 5

System

Q28: What happens if the operator starts up the
soda machine and the user enters a dollar
and the user enters a dollar and the user en-
ters a dollar and the user selects the Soda
button?

R1: If the user enters three dollars then the soda
machine produces a soda. The machine ac-
cepts dollars only.

User

A2: The machine produces a soda.

System

E28: Is there a shorter equivalent sequence?

User

J28: The operator starts up the soda machine.

Once the enumeration is complete, it is possi-
ble to derive a finite state machine that represents
the behavior of the soda machine. The number of
states in the finite state machine can be found by
counting the enumeration sequences that are not
illegal or do not have equivalent sequences. The
following five sequences occur in the enumeration
process and meet this condition (LevelStep). Start-
ing from these canonical sequences, state data can
be defined that encapsulate the behavior described
in these sequences.

11: The operator starts up the soda machine.

{START UP=TRUE, NOSODA=FALSE,
COIN COUNT=0}

27: The operator starts up the soda machine.
The user enters a dollar.

{START UP=TRUE, NOSODA=FALSE,
COIN COUNT=1}

210: The operator starts up the soda machine.
The soda machine detects that no soda is
available.

{START UP=TRUE, NOSODA=TRUE,
COIN COUNT=0}

312: The operator starts up the soda machine.
The user enters a dollar. The user enters a
dollar.

{START UP=TRUE, NOSODA=FALSE,
COIN COUNT=2}

422: The operator starts up the soda machine.
The user enters a dollar. The user enters a
dollar. The user enters a dollar.

{START UP=TRUE, NOSODA=FALSE,
COIN COUNT=3}

The technique of sequence enumeration can be
scaled to larger systems using abstractions for
stimuli and responses (Prowell, 1999). We can
achieve such abstractions in a natural way on the
level of the controlled language by introducing for
example plural noun phrases as long as the order
of events is preserved (e.g.The user enters three
dollars one by one).

6 Conclusion

In this paper we presented PENG, a controlled
natural language that can be used to write down
unambiguous requirements, and we combined
this language with a dialog-driven method for de-
veloping a black box specification. The sequence-
based enumeration technique that drives the dia-
log offers a systematic method to discover a black
box specification from behavioral requirements.
The enumeration process considered every possi-
ble combination of stimuli to the soda machine
and the requirement trace ensured that we cov-
ered all possible requirements and - if necessary
- allowed us to add omitted requirements on the
fly. Because we have considered every combina-
tion of stimuli only once and did not map a stim-
uli combination to more than one possible output,
we can guarantee consistency. The big advantage
of the presented approach is that the domain spe-
cialist can validate the correctness of the mapping
from stimuli to responses against requirements
written in a familiar notation.

Acknowledgments

This research was partially supported by Mac-
quarie University’s New Staff Grant (MUNS
9601/0078). I would like to thank Anna Ljung-
berg for creating and refining the grammar of

PENG and for many interesting discussions,
Mitko Razboynkov for developing the first ver-
sion of the look-ahead editor, and David Hood for
integrating the grammar with the look-ahead ed-
itor. Finally, I would like to thank three anony-
mous reviewers for their valuable suggestions.

References
J. Bos. 2001. DORIS 2001: Underspecification, Res-

olution and Inference for Discourse Representation
Structures. In Blackburn and Kohlhase (eds):ICoS-
3. Inference in Computational Semantics. Work-
shop Proceedings, Siena, Italy, June.

M. A. Covington, D. Nute, N. Schmitz, D. Goodman.
1988. From English to Prolog via Discourse Repre-
sentation Theory. Research Report 01-0024. Arti-
ficial Intelligence Programs, University of Georgia.

N. E. Fuchs, U. Schwertel, and R. Schwitter. 1999.
Attempto Controlled English - Not Just Another
Logic Specification Language.Lecture Notes in
Computer Science 1559, Springer.

C. Grover, A. Holt, E. Klein, and M. Moens. 2000.
Designing a controlled language for interactive
model checking. Proceedings of the Third Inter-
national Workshop on Controlled Language Appli-
cations. 29-30 April 2000, Seattle, pp. 29–30.

M. Jackson. 1995.Software Requirements and Speci-
fications, a lexicon of practice, principles and prej-
udices. Addison-Wesley, Wokingham.

H. Kamp and U. Reyle. 1993.From Discourse to
Logic. Kluwer, Dordrecht.

H. D. Mills. 1988. Stepwise Refinement and Verifi-
cation in Box-structured Systems.IEEE Computer,
Number 21, Volume 6, pp. 23–36, June.

S. J. Prowell. 1999. Developing Black Box Specifi-
cations Through Sequence Enumeration.Proceed-
ings of the Harlan Mills Colloquium, IEEE, May.

S. G. Pulman. 1996. Controlled Language for Knowl-
edge Representation.Proceedings of the First In-
ternational Workshop on Controlled Language Ap-
plications, Katholieke Universiteit Leuven, Bel-
gium, pp. 233–242.

R. Schwitter. 1998.Kontrolliertes Englisch f̈ur An-
forderungsspezifikationen. Dissertation, Institut f̈ur
Informatik, Universiẗat Zürich.

R. Schwitter. 2002. English as a Formal Specifica-
tion Language.Proceedings of the Thirteenth In-
ternational Workshop on Database and Expert Sys-
tems Applications (DEXA 2002), Aix-en-Provence,
France, pp. 228-232.

