LA.L., 200U, VOI. 41, N~ 1, PP. L1£/—100

ANSWER EXTRACTION USING A DEPENDENCY GRAMMAR IN
EXTRANS

Diego MOLLA Gerold SCHNEIDER
Rolf SCHWITTER Michael HESS

Résumé - Abstract

Nous exposons ici I'implémentation d’'un systéme d’extraction de réponses,
ExtrAns, qui utilise la sortie d'un analyseur et d’'une grammaire basés sur les
dépendances. Afin d'augmenter la vitesse de calcul, I'analyseur et la gram-
maire utilisés sacrifient le fonctionnalisme (dans le cadre des grammaires de
dépendance) au profit de la projectivité. Nous avons découvert que les struc-
tures de dépendance résultantes, bien gu’elles soient difficiles a traiter, peuvent
étre utilisées par ExtrAns pour trouver les dépendances syntaxiques et séman-
tigues nécessaires dans plusieurs des étapes du traitement linguistique. En
particulier, nous mettons I'accent sur la génération de formes logiques mini-
males.

We report on the implementation of an answer extraction system, ExtrAns,
that uses the output of a dependency-based parser and grammar. In order
to increase speed, the parser and grammar used sacrifice functionalism (in
the framework of dependency theory) in favour of projectivity. We have found
that the resulting dependency structures, although cumbersome to handle, can
be used by ExtrAns to find the syntactic and semantic dependencies needed
in several of the linguistic processing stages. In particular, we focus on the
minimal logical form generation.

Mots Clefs - Keywords

Systéme automatique (extraction de réponses), interface syntaxe-sémantique,
forme logique minimale, grammaire de dépendance, fonctionnalisme et projec-
tivité.

Automatic system (answer extraction), syntax-semantics interface, minimal lo-
gical form, dependency grammar, functionalism and projectivity.

*Computational Linguistics Group, University of Zurich. E-mail: {molla, gschneid, schwitter,
hess}@ifi.unizh.ch. This research is funded by the Swiss National Science Foundation, project
No. 12-53704.98.

© copyright ATALA 127

oliego ViULLA, Gerold oCANcIDER, KOl oCLAVVIT TER, vicnael ACoo

INTRODUCTION

Dependency grammar has long been considered of largely “academic in-
terest” only, and it clearly was not a mainstream theory of grammar. However, a
number of attempts have already been made to implement the central concepts
of dependency grammar in different Natural Language Processing (NLP) sys-
tems (Hellwig P. 1986; Covington M. A. 1990; McCord M. et al. 1992; Jarvinen
T. & Tapanainen P. 1997; Romacker M. & Hahn U. 1999), and it is becoming
clear that this theory can very well compete with more standard, constituent-
based, theories of grammar.

The current article focuses on a particular dependency grammar in a spe-
cific answer extraction application, ExtrAns, that constructs and processes lo-
gical forms. The use of a dependency grammar in ExtrAns allowed us to gain
some interesting insights into the properties of dependency grammar theory,
such as functionalism and projectivity and their relation to the semantic rep-
resentation, within the framework of a practical system. This paper is a case
study and theoretical issues are only introduced when necessary.

We start with an informal discussion of answer extraction in Section 1. In
Section 2 we present a short overview of ExtrAns and show the different lin-
guistic modules at work, including Link Grammar — the dependency grammar
we use. In Section 3 we introduce the concepts of functionalism, word order
and projectivity within dependency grammar, and present Link Grammar as an
implementation of a dependency grammar. Section 4 is devoted to logical form
generation in ExtrAns, where a wide range of issues is discussed that occur in
the translation from dependency structures into logical forms.

1. ANSWER EXTRACTION

The fundamental goal of Answer Extraction (AE) is to locate those exact
phrases of unedited text-based documents that answer a user query worded
in natural language. AE is not an altogether new concept, since it can be
seen as a specific type of information retrieval (IR) that retrieves “answer-
passages” (O’'Connor J. 1975). Emphasis in IR systems, however, has been
traditionally placed on retrieving full documents. To our knowledge, only re-
cently AE has received attention by the IR community, as the newly created
Question Answering track in TREC-8 demonstrates (TREC-8 1999).

The ideal scenario for the use of a typical IR system is the “essay-writing”
scenario. The user would use the IR system to find all the documents that are
related to a specific topic. Then, the user would take his or her time to read
the documents in order to achieve a full understanding of the topic. In this
scenario, the IR system is optimal when recall (relevant documents retrieved
/ total relevant documents) is high, even at the expense of precision (relev-
ant documents retrieved / total documents retrieved). To achieve its task the IR
system uses only the content words in documents and queries and treats them
as “bags of words” to be matched against each other. Function words, mor-

128

ANOWER EXTRKAC TITUN UoSING A DEFENDENCY GRAVMIVMIAK IN EATRKANOS

phology, and syntax are all ignored in this approach. This makes, for instance,
the concepts of computer design and design computer indistinguishable. The
“bags of words” approach takes benefit of the use of fast statistical techniques
that find the most important words in the documents and compare them with
the words in the query. This approach is preferred over more linguistic ones. In
fact, it is a common belief that linguistic analysis is useful in a IR system only if
the linguistic analysis remains very localised and shallow in nature (Lewis D. D.
& Sparck Jones K. 1996).

In contrast, the ideal scenario of an AE system is the “problem-solving”
scenario. The user has a specific problem to solve and the solution must be
found, often under time pressure. In this scenario, a short list of specific an-
swers to particular questions would be more useful than a long list of com-
plete documents. The use of “bags of words” techniques is more limited in
AE, because the text fragments retrieved are much shorter and the connec-
tion with the query is much more restricted: the text must directly answer the
query. To find out how an IR system behaves in an AE environment, ExtrAns’
document collection was split into 3124 files, one per sentence. Subsequently,
ZPRISE (Downey L. L. & Tice D. M. 1999) was used to process this informa-
tion. The results of a small evaluation with 30 short English questions showed
an average of 0.7 for recall and 0.04 for precision (only the first 100 sentences
per query were considered for the evaluation). ZPRISE obtained acceptable
recall by returning far more sentences than needed by the user.

We think that the use of deeper linguistic techniques would improve the
quality of the results. Moreover, AE offers a convenient environment for sys-
tems that use these techniques. Typical applications of AE include interfaces
to machine-readable technical manuals, on-line help systems for complex soft-
ware, help desk systems in large organisations, and public enquiry systems
accessible over the Internet. These applications use technical manuals with a
well-defined formatting and a technical language — sometimes even controlled
languages (Farrington G. 1996). The amount of data that these applications
use is also smaller and therefore more manageable than in typical IR applica-
tions.

The domain of ExtrAns is the set of UNIX documentation files known as
the “manpages”. The manpages have a very clear formatting, and the domain
is technical. ExtrAns takes advantage of this and uses deep linguistic analysis
to generate the logical forms of the data and the queries. The logical forms are
used by conventional proof procedures to find the answer to the queries (Molla
D. et al. 1998). In a small evaluation with the same queries and data as above,
the average values obtained were 0.39 for recall and 0.39 for precision. These
values are more adequate for the AE task than those of ZPRISE. Still, these
are preliminary results, and a more exhaustive evaluation is under way. The
original purpose of building ExtrAns was not to find out whether deep linguistic
processing is needed in AE, but to find out whether it is possible at all with the
technology available today.

129

oliego ViULLA, Gerold oCANcIDER, KOl oCLAVVIT TER, vicnael ACoo

off-line on-line

S—
[quer

GUI

Linguistic Modules

Tokeniser Parser Pruner Lemmatiser Disambiguator Anaphora MLF HCL

Figure 1. General architecture of ExtrAns

2. THE EXTRANS SYSTEM

2.1. Overview

In this section we present a short overview of ExtrAns, a Prolog imple-
mentation of a practical AE system (Figure 1). The current version of ExtrAns
runs over 500 unedited manpages. Since ExtrAns has to cope with unedited
documents, it needs a very reliable tokeniser that recognises and interprets
— besides regular word forms and sentence boundaries — also formatting
information. For the subsequent syntactic analysis of the manpages, Extr-
Ans relies on Link Grammar (LG) (Sleator D. D. & Temperley D. 1993). LG
describes the structure of dependency relations between the words of a sen-
tence by a set of labelled links which is called a linkage. The LG parser outputs
the linkages for each sentence that it finds, showing the words that are linked
together and the types of the links between them. For later processing steps
ExtrAns converts these linkages into directed linkages by adding the depend-
ency directions. After that, a pruner based on a set of hand-crafted heuristic
rules eliminates the most obviously wrong directed linkages. As LG does not
do any morphological analysis of the words in a sentence, ExtrAns’ lemmatiser
supplies the lemmas (root forms) of the inflected words. The lemmatiser mod-
ule uses a third-party program called Morph (Humphreys K. et al. 1996) for
this task. In the subsequent module, ambiguous attachments of prepositional
phrases, gerund and infinitive constructions are disambiguated by a corpus-
based approach (Brill E. & Resnik P. 1994). In the next step pronominal ana-
phoric references are resolved using exclusively syntactic information (Lappin
S. & Leass H. J. 1994). From the resulting set of directed linkages ExtrAns
constructs one or — in the case of multiple analyses — more minimal logical
forms (MLFs) as semantic representation for each sentence. The MLFs are

130

ANOWER EXTRKAC TITUN UoSING A DEFENDENCY GRAVMIVMIAK IN EATRKANOS

finally converted into Horn clause logic (HCL) and asserted to the Prolog data-
base.

In contrast to document sentences that are processed off-line, the logical
form of the user query is computed on-line and then proved by refutation over
the database. The logical forms retrieved in the proof indicate which words
in the document sentences answer the user query directly. These words are
ranked and highlighted both in the context of the sentence and the document.

A fully detailed discussion of all the linguistic modules contributing to the
answer extraction process is beyond the scope of this article; in the remainder
of this section we will briefly discuss the most important modules.

2.2. Link Grammar

Our choice of the syntax analysis engine was motivated mainly by prac-
tical reasons. A recent evaluation of parsers for practical applications has
shown that the majority of the evaluated parsers were dependency-based (Sut-
cliffe R. F. E. et al. 1996). ExtrAns uses Link Grammar (LG) as a particu-
lar implementation of a dependency grammar for the syntactic analysis of the
document sentences and the user queries. We chose LG because the parser
is fast enough for the on-line processing of user queries and because it is able
to handle unknown words and to skip over unanalysable parts of a sentence.!
Since LG is strongly lexicalist, each word in the dictionary is listed together
with its grammatical requirements. The default grammar/dictionary (G/D) has
about 60’000 word forms and covers a wide variety of syntactic constructions.

LG uses linkages to describe the syntactic structure of a sentence. In a
linkage, links connect pairs of words in such a way that the requirements of
each word described in the sentence are satisfied, that the links do not cross,
and that the words form a connected graph (Sleator D. D. & Temperley D.
1993).

On account of ExtrAns’ particular specification and the technical domain
under investigation we had to modify the parser and the G/D. An obvious ex-
tension was the addition of domain-specific words to the G/D. Although LG
can handle unknown words, results are always better when such words have
been categorised in advance. This is done by adding a set of specific entries
to the G/D that treat the words tagged by the tokeniser as special (command
names, command arguments, file names, etc.). Another modification to the
G/D was the re-categorisation of certain words because they are used differ-
ently in the UNIX domain. An example is the transitive verb print that had to
be re-categorised as a transitive verb that may form a two-word verb such as
print out. More substantial changes had to be done in the G/D so that LG
can deal with some specific syntactic structures like post-nominal modifiers
for command names (e.g. while an Is on such a link ...) or imperatives with
fronted openers (e.g. to quit, type q).

lUnder <http://bobo.link.cs.cmu.edu/link/improvements.html> an evaluation of the LG
parser can be found.

131

oliego ViULLA, Gerold oCANcIDER, KOl oCLAVVIT TER, vicnael ACoo

2.3. Disambiguator

ExtrAns’ pruner filters out all those directed linkages that are obviously
wrong. But there are still many directed linkages left where ExtrAns cannot de-
cide which is the correct one unless we use some kind of domain knowledge.
This occurs in the case of attachment ambiguity. ExtrAns uses a corpus-based
approach (Brill E. & Resnik P. 1994) to find the correct attachment. Brill and
Resnik’s original approach was designed to solve the PP attachment ambigu-
ity of sentences with a transitive verb and a prepositional phrase (e.g. cp cop-
ies filenamel onto filename2) and the program was trained for the Treebank
Wall-Street Journal corpus (Marcus M. et al. 1993). ExtrAns takes this ap-
proach one step further (Molla D. & Hess M. 2000) and includes all categories
of verbs, multiple PP attachment (e.g. cp copies the file from A to B), gerund
and infinitive constructions (e.g. The grun function runs ‘program’, using the
PATH variable to find it.). Of course, we need to specialise the disambiguator
in an adequate way — therefore, it was trained with a subset of the manpages
for our domain. Due to this specialised corpus the results were more accur-
ate (76,6% correct disambiguations) than those based on the Treebank corpus
(72,8% correct disambiguations) although the number of training rules derived
from the manpages was far smaller (116:1770 rules).?

2.4. Anaphora resolution

In the current version of ExtrAns, anaphora resolution is restricted to pro-
nominal cases. The resolution algorithm is an adaptation of a purely syntactic
approach (Lappin S. & Leass H. J. 1994). This approach was designed to
identify the noun phrase antecedent of third person pronouns (e.g. If filename2,
already exists, it, is removed before filenamel is moved) and lexical anaphors
(e.g. cp copies a file; onto itself;) and was applied to the syntactic representa-
tion generated by McCord’s Slot Grammar (McCord M. et al. 1992). For every
antecedent candidate, the algorithm derives from the syntactic representation
a measure of discourse salience. A set of factors such as recency, being in
the subject position, being in the object position or being contained in another
noun phrase determine this measure. On account of this measure the co-
reference between a pronoun and the noun phrase antecedent is established
by classifying both words in the same equivalence class. An equivalence class
represents those words that refer to the same object in the domain.

Since Slot Grammar is dependency-based, the relevant relations (also
called slots) that were assigned to a sentence can be emulated by checking
the link types returned by the LG parser. The coherence of the syntactic factors
is checked by a set of syntactic rules that rely on the direction of the dependen-
cies represented by the links. A small evaluation was carried out with a subset
of the manpages and — after manually resolving the pronominal references —
80% correct resolutions were found.

2The complete training set was split into two parts for evaluation purposes. One part was
used for training in the evaluation, and the other was used to compute the figures.

132

ANOWER EXTRKAC TITUN UoSING A DEFENDENCY GRAVMIVMIAK IN EATRKANOS

2.5. Minimal logical form

The input of the logical form generator is a set of directed linkages ex-
tended with information from the tokeniser plus a list of equivalence classes
provided by the anaphora resolution algorithm. For example, the sentence cp
does not copy filenamel onto itself is modified by the tokeniser by tagging
the UNIX command cp (cp.com) and the command argument filenamel (file-
namel.arg). The anaphora resolution algorithm creates an equivalence class
with the words filenamel.arg and itself. The logical form generator consults a
small domain knowledge base and categorises the types of words tagged by
the tokeniser as command arguments. For example, filenamel.arg is categor-
ised as a file.

It is important that ExtrAns is fast and robust enough for the AE task.
Therefore, the logical forms must be easy to derive from the directed link-
ages and easy to use in the proof procedure, and yet they must be expressive
enough to cope with the relevant semantic facts of the data. This is why we
resort to a simple notation that consists of a conjunction of predicates where
all the variables are existentially closed. This notation is easy to build, as we
will see in Section 4, and it is also easy to work with. To make it expressive
enough, we need to resort to reification and to a particular interpretation of the
logical operators and quantification.

By reification we mean that some “abstract” concepts introduced by pre-
dicates become “concrete”. As opposed to Hobbs’ ontologically promiscuous
semantics (Hobbs J. R. 1985), where every predicate is reified, for the time
being we apply reification to a very limited number of types of predicates:

Objects. A noun like cp introduces the predicate object(cp,o0l,x1), whose
meaning is “o1 is the concept that the object x1 is cp”. The new entity o1
can be used in constructions with adjectives modifying nouns intension-
ally (e.g. a possible error), or in expressions of identity (e.g. A file is the
unit of storage in UNIX).

Events. A verb like copies introduces the predicate evt (copy,el, [x1,x2]),
whose meaning is “el is the concept that x1 copies x2” — x1 and x2
represent the objects introduced by the arguments of the verb copy. Re-
ification of events is the core of the Davidsonian semantics (Davidson
D. 1967; Parsons T. 1985), and is useful to express the modification of
events by means of adverbs (e.g. copy quickly), prepositional phrases
(e.g. copy onto the hard disk), etc.

Properties. Adjectives and adverbs introduce properties. For example, an ad-
jective such as blue introduces the predicate prop(blue,pl,x1), whose
meaning is “p1 is the concept that x1 is blue”. Reification of properties is
useful when we want to modify an adjective (e.g. the house is pale blue).

Non-reified predicates can be introduced, too. For example, the preposition
onto would introduce a predicate like onto(el,x1). The names of the variables

133

oliego ViULLA, Gerold oCANcIDER, KOl oCLAVVIT TER, vicnael ACoo

in these examples do not have any semantic content — they are all of the same
type.

This notation can be used to encode the minimal logical form (MLF) of a
sentence, that is, a logical form that expresses the minimal information neces-
sary for the AE task. The current MLFs, for example, do not encode complex
quantification or logical operators (apart from conjunction). Further informa-
tion that is ignored includes tense and aspect, temporal relations, plurality, and
modality. We can see this in the following examples of sentences and their
corresponding MLFs:

(1) a. cp.com copies files
holds(el), object(cp,01l,x1), object(command,o2,x1),
evt (copy,el, [x1,x2]), object(file,o03,x2)

b. cp.com does not copy a file onto itself
not(el), object(cp,o0l1,x1), object(command,o02,x1),
evt(copy,el, [x1,x2]), object(file,03,x2), onto(el,x2)

C. cp.com refuses to copy a file onto itself
holds(el), object(cp,01,x1), object(command,o2,x1),
evt (refuse,el, [x1,e2]), evt(copy,e2, [x1,x2]),
object(file,03,x2), onto(e2,x2)

d. if the user types y, then cp.com copies the files
if(el,e2), object(cp,o0l,x1), object(command,o02,x1),
evt (copy,el, [x1,x2]), object(file,o03,x2),
object (user,o04,x3), evt(type,e2,[x3,x4]), object(y,o05,x4)

All these MLFs contain the predicate object (command,02,x1) because
the tokeniser has tagged cp as a command (cp.com).

The words file and itself in (1b) and (1c) co-refer and result in variables
that belong to the same equivalence class. During the MLF generation these
variables are converted into a unique variable denoting the same entity.

The negation in (1b) is represented as a predicate over the concept of
a particular copying event, and the implication in (1d) is a predicate over the
concepts of a particular typing and copying event each.

In these examples we can also see how existence is handled. By default
only existential quantification is used, but some of the entities have a stronger
sense of existence. For example, the copying event in (1b) exists only in the
Platonic universe which contains everything one can think of. The copying
event in (1a), on the other hand, also exists in the world of manpages, and
that is explicitly asserted by the predicate holds (Hobbs J. R. 1985; Hobbs
J. R. 1996). The minimal logical forms in (1c) and (1d) do not state whether
the copying event holds. One could argue that the event in (1c) does not hold
because of the lexical meaning of refuse. However, for the time being we do
not decompose lexical meaning, and thus we cannot deduce the negation. The
information is therefore left underspecified. We assert that the refusing event
holds, but we do not say anything about the copying event. If needed, and

134

ANOWER EXTRKAC TITUN UoSING A DEFENDENCY GRAVMIVMIAK IN EATRKANOS

provided that we have enough knowledge to assess it, its negation or assertion
can be inferred in a later stage.

There are several reasons why we do not want to encode all the inform-
ation available in the data. First of all, we believe that the logical forms should
remain simple. Further complications in the logical forms could prevent a prac-
tical application from being fast and robust enough. To give an example with
the sentences introduced in (1), they are all informative answers to queries like:

(2)

which command can copy files?
which commands copy files?
which command can copy a file?

a o T b

which command copies all my files?

However, if one were to implement modality, plurality, and quantification,
one would also need to add the right inference rules to be able to retrieve (1)
from (2). In particular, even if the copying event is conditional on the user’s typ-
ing ‘y’, sentence (1d) is an informative answer and it can be inferred straightfor-
wardly with the current MLFs. If we had converted (1d) into a logical form with
a logical implication, we would have had to decide whether the antecedent the
user types y is true (which, incidentally, cannot be decided due to lack of con-
textual information). In ExtrAns we do not encode semantic information that
is not going to be used later or that does not significantly improve the overall
performance of the system.

MLFs aim at being incrementally extensible so that new (more specific)
information can be added without destroying the given information. Given their
simple flat conjunctive structure, further extensions are feasible, including com-
plex quantification (Hobbs J. R. 1996). We only need to add more elements to
the MLF.

The systematic construction of the MLFs from the directed linkages is
discussed in Section 4.

2.6. Horn clause logic

After the MLFs have been generated they are translated into Horn Clause
Logic (HCL) for processing reasons. In the current implementation of ExtrAns
only Horn clauses consisting of facts build the database, but we are not ex-
cluding the full power of HCL for the future. Depending on whether the MLF
corresponds to a document sentence or a user query, variables are treated
differently during the translation to HCL. In the former case the variables are
skolemised and in the latter case converted into Prolog variables. To be able
to display a retrieved sentence later by selective highlighting, every predicate
in the HCL representation of the MLF contains a pointer to the sentence (e.g.
sent1/1 for the first interpretation) together with a list of pointers to the words
(e.g. [1] or [1,2,3]) that resulted in the creation of the predicate. Example (3)
shows the HCL representation of a simple document sentence:

135

oliego ViULLA, Gerold oCANcIDER, KOl oCLAVVIT TER, vicnael ACoo

(3) cp.com copies files

holds(e1)/ sent1/1°[1]. object(cp,o1,x1)/ sent1/17[1]].

object(command,oQ,Xl)/‘sentl/l”[l]L
evt (copy,el, [x1,x2])/ sent1/17[1,2,3]].
object(file,03,x2)/ sent1/1"[3]].

User queries are converted into negative Horn clauses and all solutions
are searched by refutation over the database. This is done by using Prolog’s
default proof procedure (findall), e.g. (2) all generate:

(4) ?- findall([S,I,P1,P2,P3], (object (command,_,X)/S/I"P1,
evt (copy,_, [X,Y])/S/I"P2, object(file,_,Y)/S/I"P3), Results).

The Horn clause generator deals with synonymy by converting each word
into its synonym set identifier, with the help of a small domain-specific thesaurus
based on WordNet (Fellbaum C. 1998). To ease readability, this conversion is
not shown in (3) and (4).

2.7. Graphical user interface

The graphical user interface (GUI) of ExtrAns displays the retrieved sen-
tences by selectively highlighting all relevant parts of a sentence that directly
answer the query. This presentation technique was developed as document
sentences may answer a user query in different ways for any of the following
reasons: First, a document sentence may be syntactically ambiguous, e.g. be-
cause the disambiguator can only resolve attachment ambiguities. In particu-
lar, homographs belonging to different parts of speech may produce alternative
parses (in the same way as in time flies like an arrow), and these cannot be
disambiguated for the time being. In this case ExtrAns asserts all alternative
MLFs for a sentence and includes all of them in the proof. Second, a document
sentence can have multiple (i.e. not exclusive) interpretations. In such cases
ExtrAns will send more than one sentence to the parser and will produce altern-
ative MLFs. This is the case for the second sentence with a comma-delimited
enumeration in Figure 2 (overleaf). Third, a MLF may provide multiple answers
because different sets of facts of the same logical form can prove the query.
This case occurs if e.g. a document sentence has a coordinated structure. And
finally, a user query can be ambiguous, too, therefore different interpretations
of the same query may be proved by different parts of one MLF.

Consider, for example, the result of the query Which command removes
a file? in ExtrAns’ main window (Figure 2). All words of the retrieved document
sentences that answer the user query are highlighted. Since some sentences
contain unresolvable ambiguities that lead to more than one solution, each
word is ranked according to its frequency in all the solutions found. The more
often a word occurs in a solution the more intense its colour is in the presenta-
tion — as the second sentence in Figure 2 shows. It is therefore very easy for

136

ANOWER EXTRKAC TITUN UoSING A DEFENDENCY GRAVMIVMIAK IN EATRKANOS

—| Extrans: Main window |
File Options Data: 500 pages
Linguistie gquery: Which command removes a file® OK
—
Score: [-1,1.000,0] il
EM@N/DESCREIPTION/l :rim removes one or more files.
Soore: [-1,1.333,0]
el MAMESL trm, rmdir - remove files or directories
Score: [-1,2.000,0]
JDESCRIPTION/G:2s5plit prints the character counts for
each file created, and remowves any files it creates if an error
CCCUrs .
SBeoore: [-1,5.250,0]
IEEml/ DESCRIPTION/7: lprm reports the names of any files it |
removes, and is silent if there are no applicable jobs to remove.
/
0% 25% 50% 15% 100%

Figure 2. Reported answers in ExtrAns’ main window
after 3.2 secs on a Sun Ultra 10 workstation.

the user to see which parts of a highlighted sentence are particularly relevant.
Relevance is seen here as a degree of unambiguity.

By clicking on the name on the left of a displayed sentence (e.g. rm.1),
the user gets access to the full manpage. This makes it possible for the user
to verify immediately in the context of the document whether the highlighted
sentence contains in fact an answer to the question.

3. DEPENDENCY GRAMMAR

After this overview of the ExtrAns system, we will focus now on depend-
ency grammar, the concepts of functionalism and projectivity, and how Link
Grammar handles them.

3.1. Basic concepts of dependency grammar

There are a number of possible definitions of dependency grammar (DG).
They all have in common that certain words (so-called governors) expect other
words (so-called dependents), which are either compulsory (syntactic comple-
ments, semantic arguments) or optional (syntactic adjuncts, semantic modifi-
ers). In its simplest version, DG is a constituent grammar which only knows
lexical items. DG is the one grammar formalism that really takes government
as its foundation (Covington M. A. 1992:4), whereas in Government & Bind-
ing (GB) no universal definition of government exists (Cook V. & Newson M.
1996:315). DG is essentially a valency grammar in which the valency concept
is extended from verbs to nouns and adjectives and finally to all word classes.

137

oliego ViULLA, Gerold oCANcIDER, KOl oCLAVVIT TER, vicnael ACoo

On the syntactic dependency level, predicative adjectives for instance open
valencies for verbs (ready to go), and prepositions open valencies for nouns.
Tesniere’s original dependency concept (Tesniére L. 1959) aims at being
a proto-semantic language-independent theory rather than merely a syntactic
theory. Configurational considerations play at most a secondary role. Tes-
niére distinguishes between the ordre linéaire of the running text and the ordre
structural which is expressed by a dependency structure. Such a dependency
structure is a deep-syntactic structure, also called tectogrammatical (Sgall P.
et al. 1986) or functional structure (Broker N. 1998b; Jarvinen T. & Tapanainen
P. 1997). As word order plays no primary role, dependencies between words
may also cross each other. Dependency structures without crossing depend-
encies and constituent structures without crossing tree branches are called
projective or continuous, while crossing dependency structures or crossing
tree branches are called non-projective or discontinuous. No extensions to
the original DG conception of Tesniére are needed to express non-projectivity.

3.1.1. Levels of dependency

Many linguists distinguish at least between morphological, syntactic and
logico-semantic dependency (Mel'Cuk I. 1988; Helbig G. 1992). A difference
between the syntactic and the semantic level is e.g. that while determiners
depend on nouns on the syntactic level, nouns come to depend on determiners
on the semantic level (Montague R. 1973).

The subdivision of the syntactic level into a surface-syntactic and a deep-
syntactic level (Mel'Cuk 1. 1988) reflects Tesniére’s distinction between ordre
linéaire and ordre structural. But Tesniére was criticised because his con-
ception of dependency is not consistently functional and sometimes resorts
to surface-syntactic arguments. The mapping between surface-syntactic and
deep-syntactic dependency is not isomorphic. First, in a functional approach
it can be argued that prepositions are just relational markers like case (Pollard
C. 1994:44-45), which allows linguists to deal with highly inflectional languages
like Finnish in the same way as with isolating languages like English — the dir-
ection of the dependency is reversed between the surface-syntactic and the
deep-syntactic level. Second, on the deep-syntactic level the verb forms one
coherent unity, as opposed to the frequent separation of auxiliary and main
verb on the surface-syntactic level. Tesniére himself addresses this problem
by using his device of translation, which takes up all the verbal elements into a
single nucleus behaving like a single word. Third, in many cases, a noun mod-
ified by a relative clause can be bound to the head verbs of the subordinate
clauses on the deep-syntactic level (e.g. rm removes the files, that the user
chooses t; to delete t,).

(Hudson R. 1996) suggests using additional deep-syntactic dependency
links for the third case above. A dependent is allowed to have a surface-
syntactic head and, in addition, a different deep-syntactic head. In such an ap-
proach, DG structures become graphs. The introduction of such extra links is
a way of encoding a trace to a moving argument like in GB. Syntactic depend-

138

ANOWER EXTRKAC TITUN UoSING A DEFENDENCY GRAVMIVMIAK IN EATRKANOS

ency generally is equivalent to government, additional deep-syntactic links are
part of the binding theory.

3.1.2. Constituency versus dependency

Constituent grammars are more widespread and known much better than
DG, therefore a comparison between both approaches is pertinent. Any de-
pendency structure is a coherent hierarchical structure of a whole sentence,
because in dependency theory, valency is extended to all word classes. Even
if constituents are not a primitive of the theory, they can easily and consistently
be derived by recursively collecting all the dependents and sub-dependents of
a head. The following dependency structure illustrates this:

(5) the man that came eats bananas with a fork

. SENT
Subj PP . PObj
Det | Rel , TH | 0bj T Det |
///// the man that came eats bananas with a fork

The subject of the sentence is the constituent whose head is man. Thus,
the subject is the man that came. The prepositional phrase is with a fork, the
direct object is bananas, and the relative clause is that came. If we look at (5),
we can see that the directed links look like a tree, very much like in the case of
the output of a constituency-based parser.

(Hays D. 1964) and (Gaifman H. 1965) have in fact proved that (at least
a version of) DG is weakly equivalent to a context-free constituency grammar
(CFG), and even strongly equivalent to a CFG without intermediate categor-
ies (Baumgartner K. 1970). (Covington M. A. 1994) proves strong equivalence
to X-bar syntax for those DGs whose dependency types can be matched to
the X-bar primitives specifier, adjunct and complement. While these proofs
are mathematically correct, they only apply to projective DGs. They neglect
that at least Tesniere’s original approach is completely non-configurational, i.e.
word position is not primarily taken into consideration (Baumgéartner K. 1970;
Jarvinen T. & Tapanainen P. 1997; Schneider G. 1998). Tesniere’s DG has free
word order and is inherently non-projective. Many current DG implementations
(including the dependency-based LG) still depart from Tesniére in this respect
and remain projective and thus context-free and equivalent to constituency. A
conversion between constituency and dependency is then possible, but some
of DG’s inherent functionalism is sacrificed, as we shall explain now.

3.2. Functionalism, word order, and non-projectivity

In a functional grammar, related sentences should be assigned related
or identical structures. A monostratal grammar with fixed word order will have
to use different structures even for such obviously related cases as assertive
and interrogative sentences, as in the latter the subject-verb order is reversed.

139

oliego ViULLA, Gerold oCANcIDER, KOl oCLAVVIT TER, vicnael ACoo

A monostratal grammar with free word order (e.g. a monostratal immediate
dominance/linear precedence grammar) can already be much more functional,
but it fails to be functional in unbounded dependencies, for which true non-
projectivity or several levels of representation are needed. Most phrase struc-
ture grammars exploit the second alternative, so that they remain projective
both at surface and deep level. The two levels are mapped to each other by
movement, in which the surface and deep position of a word are co-index-
ed (Haegemann L. 1994). Co-indexing or movement is typically not available
in DG, since there are no empty categories and no non-lexical nodes. Only
by extending the DG formalism with non-lexical nodes it is possible to get a
co-indexing version of DG (Lombardo V. & Lesmo L. 1998). (Neuhaus P. &
Broker N. 1997) state that unbounded dependencies can only be described in
dependency theory by using non-projectivity. The only other alternative is to
allow sentences with unbounded dependencies to receive analyses that are
widely different from their functionally related counterparts, as we will see with
LG’s linkages.

Long-distance dependencies are an example of non-projectivity. The fol-
lowing output (6) of (Jarvinen T. & Tapanainen P. 1997)’s functional Depend-
ency Parser for English is a non-projective example of fronting, and (7) is its
assertive counterpart®;

(6) What would you like me to do?

" main obj
_ obj
verb-group subj .
subj inf |punc
0—»? Td—lb—b?

///// What would you like me to do ?

(7) You would like me to do this.

° main obj
obj
verb-group subj .
subj . inf | punc
///// You would like me to do this

The following sections will compare two alternatives: either giving up pro-
jectivity and assigning closely related structures to functionally related sen-
tences, or keeping projectivity and giving up functionalism, i.e. assign com-
pletely different structures to functionally related sentences.

3This is the actual output of their system; some dependency labels are thus different from
our notation (main=SENT, obj=0bj, etc.). Note that while other linguists would take the aux-
iliary instead of the main verb as the surface-syntactic head (see 4.5), the analysis remains
non-projective either way.

140

ANOWER EXTRKAC TITUN UoSING A DEFENDENCY GRAVMIVMIAK IN EATRKANOS

3.2.1. Giving up projectivity, keeping functionalism

While the DG characteristics of non-projectivity and free word order may
be seen as a disadvantage, they also turn out to be one of the linguistically
appealing strengths of DG: functionally related structures, most of them in-
volving marked word order, some of them involving non-projectivity, can all be
assigned closely related analyses:

e The same monostratal analysis can be assigned to sentences with un-
bounded dependencies as to their counterparts, as in (6) and (7).

e Inflectional languages such as German, Latin, Russian or Finnish (to
name only a few) have a relatively free word order. In a non-projective
grammar, all positional variants can be assigned the same structure (Bunt
H. & van Horck A. 1996).

e \erbal particles can break up the verbal unity (e.g. He called her up).

e Active and passive sentences and constructions with or without dative
shift can be assigned the same structure in a functional DG.

¢ In a non-projective grammar it is possible to add deep-syntactic long-
distance dependencies, as we will see later.

In such a functional version of DG, a parser directly returns a deep-syntactic
structure of the sentence which looks much like the f-structure in Lexical-
Functional Grammar (LFG) (Broker N. 1998b). For example, a simplified f-
structure of (6) could be (8). Such a functional structure is an ideal candidate
for an interface to semantics (Dalrymple M. et al. 1995:275).
(8) [SUBJ [PRED'you|]
SUBJ [PRED'mé|
OB.J OBJ [PRED'what']
PRED ['do (1SUBJ) (tOBJ))']

PRED 'like {(1SUBJ) (tOBJ))
MOOD COND

While functional analyses are linguistically appealing, non-projectivity is
computationally costly. In their discussion of non-projective DGs, (Neuhaus
P. & Broker N. 1997:337) prove that recognition (and thus, parsing) of lin-
guistically adequate dependency grammars is NP-complete. In practical non-
projective DG parsing, much of the parsing can be done by a context-free
backbone (Broker N. 1998a), but NP-completeness remains a serious threat in
the background.*

4See (Kahane S. et al. 1998) for a DG which uses lifting rules, a device akin to GB move-
alpha or the HPSG Slash feature. Because lifting rules correspond to a small well-defined
amount of non-projectivity, such DGs are parsable in polynomial time.

141

oliego ViULLA, Gerold oCANcIDER, KOl oCLAVVIT TER, vicnael ACoo

3.2.2. Keeping projectivity, giving up functionalism

If we opt to keep projectivity, we can rely on a large number of established
parsing algorithms with polynomial parsing times. In the case of Link Gram-
mar, the parsing complexity is O(n?) (Sleator D. D. & Temperley D. 1993). But
projective dependency parsers cannot deal with unbounded dependencies in
an elegant way. Link Grammar is only able to parse such sentences because
it gives up some standard dependency assumptions and because it employs
additional link types, which are linguistically difficult to account for. We shall
see in the following how Link Grammar remains projective at the expense of
functionalism.

3.3. Link Grammar as a dependency grammar

The syntactic structures which Link Grammar (LG) yields are called link-
ages. Like a DG, LG only knows lexical nodes and is strongly lexicalist. Valency
is also the central idea in LG. It is hardly surprising, therefore, that the creators
of LG themselves suggest that there is a very close relationship between de-
pendency systems and Link Grammar (Sleator D. D. & Temperley D. 1993:12).

Linkages are not very intuitive at first sight. An LG link label consists
of upper case letters indicating the major link type and lower case letters to
indicate subtypes. An 0s link, e.g., stands for an object link in which the object
is singular:

(9) You would like me to do this

T0o
wd Sp I 0x I Os

///// you would like me to do this

(10) Would you like me to do this?

Xp R
I T0o
Qd [SIp o o Ox o I 4 0s

T
///// would you 1like me to do this ?

(11) What would you like me to do?

Xp R
Bsw
I T0o
Wq L 5Ip o Ox I

///// what would you like me to do 7

Sentences (9), (10), and (11) illustrate that the verb-subject link has dif-
ferent link labels for unmarked and reversed word order. The S link indicates
that the subject appears to the left, while an SI link type is used for reversed
order, i.e. if the subject appears on the right of the verb. These two link labels

142

ANOWER EXTRKAC TITUN UoSING A DEFENDENCY GRAVMIVMIAK IN EATRKANOS

need to be explicitly mapped to each other if we want to build up a functional
structure.

In (9) (like in all assertive sentences), LG takes the subject to be the head
of the sentence, a clear deviation from standard DG assumptions. The root link
wd directly connects the root to the subject, which is non-standard in depend-
ency theory and which makes it non-trivial to find the head of the sentence. If
the subject was still taken to be the main head of sentences (10) and (11), they
would need a non-projective analysis. LG can only remain projective by taking
the frontmost element of a sentence to be its top head, which is only some-
times the verbal head. For the generation of ExtrAns’ minimal logical forms,
the additional link types used by LG need to be explicitly mapped to their func-
tional correspondences. In (11), for instance, Bsw needs to be mapped to the
functional 0s (object) we find in (9) and (10).

The following is an overview of the differences between linkages and DG
structures. Some of these differences can be seen by comparing the depend-
ency structures (6) and (7) to the corresponding linkages (9) and (11):

e Projectivity: LG is projective and cannot directly analyse non-projective
structures.

e Links are undirected: Unlike dependencies, LG links do not state which
participant in a link is head and which is dependent. However, as we
shall see below, this problem can be overcome.

e Word order: LG rules define word order, i.e. whether a word links to an-
other word on the left or on the right. Fixed word order seriously restricts
the ability of a monostratal grammar to be functional.

e Top-head word: LG takes the frontmost element to be the top head of the
sentence rather than the main verb. This allows LG to remain projective.

e Some linkages contain cycles: LG is enriched with deep-syntactic links
for e.g. relative clauses, as we shall see now.

4. LOGICAL FORM GENERATION IN EXTRANS

ExtrAns produces minimal logical forms (MLFs) of sentences from link-
ages returned by LG. As we have seen above, these linkages differ from the
most common types of dependency structures in several respects. These dif-
ferences make linkages more difficult to handle. Let us compare the depend-
ency structure (5), repeated as (12), with the linkage (13):

(12) the man that came eats bananas with a fork

- SENT
Subj PP L PObj
Det | Rel TH JEELY T Det |
///// the man that came eats bananas with a fork

143

oliego ViULLA, Gerold oCANcIDER, KOl oCLAVVIT TER, vicnael ACoo

(13) the man that came eats bananas with a fork

Ss
. wd Bs MVp R Js
_ Ds R _ RS Op T Ds
T * * — , g
///// the man that came eats bananas with a fork

There are three obvious differences that we have discussed already. First,
some of the link labels in the linkage are not linguistically intuitive. Second, the
link wd in (13) connects the root with the subject man, while the corresponding
dependency (SENT) connects the root with the verb eats. These two differences
complicate the MLF generation. Third, links lack direction of dependency. This
information, however, can be recovered. Because of its fixed word order, LG
uses different link types for head-right links and head-left links of the same
kind. The direction of the dependency depends mostly on the link type and
therefore a simple table suffices in most cases (there are exceptions, such as
the link B, as we shall see in Section 4.3).

We can also see that the links B, R, and RS form a cycle. This is the result
of adding deep-syntactic links such as B. To simplify the syntactic tests in the
anaphora resolution algorithm, only surface-syntactic links are extended with
the direction of the dependency. The B link should therefore not be extended:

(14) the man that came eats bananas with a fork

Ss
. wd MVp _. Js
_ Ds R __ RS Op T Ds
T > r————— . 3
///// the man that came eats bananas with a fork

A directed linkage such as (14) is part of the input of ExtrAns’ MLF gen-
erator. The linkages in the following sections will be displayed in this format
by default. Bear in mind that the directed linkage (14) is still different from the
dependency structure (12), though. Converting (14) into (12) and deriving the
MLF from it would be at least as time-consuming and complex a task as creat-
ing the MLFs directly from (14). We have chosen the latter method for reasons
of simplicity and in order to keep processing times minimal. In the remaining
sections we will focus on specific types of sentence structures, and how MLFs
can be constructed from the corresponding directed linkages without having to
convert the linkages into more standard dependency structures.

Unless otherwise stated in particular examples, all the directed linkages
and MLFs shown from now on are the direct output of ExtrAns, slightly edited
to improve readability. As a consequence, the MLFs use Prolog syntax, and
the variable names and indices do not directly correspond to those in the hand-
made examples earlier in this paper.

144

ANOWER EXTRKAC TITUN UoSING A DEFENDENCY GRAVMIVMIAK IN EATRKANOS

4.1. Overall sentence structure

The first problem that appears when trying to analyse a sentence or
clause is that there are many different structures that must be treated in their
own particular way. Coordination aside (Section 4.2), there are conditionals
and other complex sentences that complicate the processing.

Given that the directed linkage does not consider the verb as the head of
the sentence, we need to find the verb by exploring the sentence. An additional
complexity is that the verb may be composed of a main verb and one or more
auxiliary verbs. In the search of these verbs we may traverse several links, as
in (15):

(15) cp will quickly copy the files
I Op
Wd Ss § ' Em § Dmc §

///// cp.com will quickly copy the files

We need to traverse Wd and Ss to find the auxiliary verb will, plus I to
find the main verb copy. Once we have found the main and auxiliary verbs,
the algorithm can basically follow the subject dependency to find the subject,
and process the verb phrase. The task is not so easy, though. The general
algorithm is:

1. Starting from the leftmost auxiliary verb (or the main verb if there is no
auxiliary verb), find the head of the subject (cp.com) and build its logical
form object(cp,o0al,x1), object(command,oa2,x1).

2. Build the logical forms object(file,0a3,x6) of the objects (only one
object in (15)).

3. Create an entity for the main eventuality, e4.
4. Build the logical forms of other modifiers prop(quickly,p3,e4).

5. Add the logical form of the main event. The final MLF becomes (new
information in boxes):
holds(e4) |, object(cp,oal,x1l), object(command,oa2,xl),

, object(file,o0a3,x6),

evt (copy,e4, [x1,x6])
prop(quickly,p3,e4).

This procedure becomes extremely complicated when one considers the vari-
ous idiosyncrasies of the sentence structures and the way they are handled by
LG. We will explore some of these idiosyncrasies in the rest of this section.

145

oliego ViULLA, Gerold oCANcIDER, KOl oCLAVVIT TER, vicnael ACoo

4.2. Coordination

Coordination generally poses a problem for a dependency-based sys-
tem. Even if one chooses one of the conjuncts of files and directories as the
head of the whole coordination on syntactic grounds (Mel'Cuk I. 1988), this
does not help in the task of computing the MLF because the resulting struc-
ture would become asymmetrical, making one of the conjuncts depend on the
other. Strictly speaking, the connective and cannot serve as the head be-
cause, among other things, the verbs in a sentence like the user compiles and
executes the program have the same dependent subject and object.

LG lists all the possible combinations that result from distributing the com-
ponents of the coordination:

(16) mv moves files and directories

wd Ss Op
///// mv.com moves files and directories
. Wd .. Ss Op o
* > ¢) —
///// mv.com moves files and directories

However, this approach can create a combinatorial explosion, and it fails
to account for those cases where collectivity is implied, like in the sentence
John and Mary met. An additional problem is that we need to recover the con-
nective and. A better approach is to group the components of the coordination:

(17) mv moves files and directories

Op
Wd Ss | | C001 CO0r
///// mv.com moves files and directories

holds(e2), object(mv,o0al,x1), object(command,oa2,x1),
evt (move,e2, [x1, x4|]1), |x3Cx4|, |x5Cx4|, |object(file,0a3,x3) |,

‘ object (directory,oa4,x5) ‘

> 2

In (17), the components are grouped together (this has been done by
slightly modifying LG’s parser), making the connective and dominate the other
components of the coordination. The resulting MLF introduces a lattice part-of
operator C (Landman F. 1991). The MLF of the NP can be computed easily by
following the direction of dependency:

e The word and introduces an entity x4 that represents the coordination.

e The word files and the dependency with and introduce:
x3Cx4, object(file,0a3,x3).

e The word directories and the dependency with and introduce:
x5Cx4, object(directory,oa4,x5).

146

ANOWER EXTRKAC TITUN UoSING A DEFENDENCY GRAVMIVMIAK IN EATRKANOS

There are different types of coordinated elements (nouns, verbs, NPs, adverbs,
adjectives, etc). All of these different types of coordination must be treated in a
different way in every case. Some of them may be quite complex, like the case
of a passive with a coordination of ditransitive verbs:

(18) Mary is issued and given a book

Pv Os
Wd Ss C001 J CO0r, Ds
?—D?d—.ﬂ) ?4—0—’? ?4—0
///// Mary is 1issued and given a book

holds(e4), object(’Mary’®,oal,x1), e3Ce4,
evt (issue,e3, [a3,x7,x1]), e5Ce4, evt(give,eb5, [a3,x7,x1]),
object (book,0a2,x7)

4.3. Embedded clauses

An embedded clause adds complexity to the sentence, introducing re-
cursivity. A further complexity is that, on the deep-syntactic level, the embed-
ded clause typically has dependencies that cross the boundary of the clause
itself. These dependencies are always backward dependencies (link type B
and its subtypes). An example is the relative clause:

(19) rm removes the files that the user indicates

Op Cr Ss
Dmc R Ds

4 [o 4

Wd Ss
///// rm.com removes tTIIe files that the user indicates
holds(e2), object(rm,oal,x1), object(command,oa2,x1),
evt (remove,e2, [x1,x4]), object(file,o0a3,x4),
object (user,oa4,x7), evt(indicate,e8, [x7,x4])

The link type B (with any subtype, such as Bp above) does not obey the
syntactic structure of the sentence, and its introduction may create a cycle in
the linkage, as we can see above. Sitill, this link is important, since it leads
to the missing constituent in the main sentence. The presence of such a link
simplifies the construction of the MLF since we only need to follow the link
(always a B link) to find the constituent that is missing in the relative clause. In
fact, the B link is a functional link that encodes a deep-syntactic dependency
— in this case, a predicate-argument relation. This is the only purely deep-
syntactic link that LG introduces, although, as we will see later, deep-syntactic
links that risk violating projectivity are avoided by LG.

In other embedded clauses, the B link is not an extra link but the only
connection with the sentence. This is the case with embedded wh-clauses:

5The quotes in *Mary’ are a result of Prolog notation, to distinguish the word from a Prolog
variable.

147

oliego ViULLA, Gerold oCANcIDER, KOl oCLAVVIT TER, vicnael ACoo

(20) cp copies what the user indicates

Bsd
Wd Ss 0 § , Ds , Ss |
///// cp.com copies what the wuser indicates

holds(e2), object(cp,o0al,x1), object(command,oa2,x1),
evt(copy,e2, [x1,x3]), object(user,oa4,x5),
evt (indicate,eb, [x5,x3])

This presents the problem that, on the surface-syntactic level, the verb of the
clause is dependent of the wh-word, but on the deep-syntactic level, it is the
wh-word that is dependent of the clause — this is the option shown in (20). It
would be more convenient if the linkages included a new link parallel to B but
directed the opposite way which shows the surface-syntactic dependency. In
that fashion, the treatment of B would be more uniform. As it is now, ExtrAns
must use B for both senses.

4.4, Questions

Interrogative sentences present the problem that some of the compon-
ents appear in reversed order or that they are in a position different from the
normal position in a declarative sentence. This may lead to non-projectivity, as
we have seen in sections 3.2 and 3.3. In LG, this problem is solved by resorting
to different link labels:®

(21) which command copies files?
Xp
Ws Ds*w Ss Op
///// which command copies files 7
object (command,0A1,X2), evt(copy,E3,[X2,X4]),
object(file,0A2,X4)

(22) what does cp copy?
Xp .
Bsw
Ixd
Wq +_SIs
///// what does cp.com copy 7

object(cp,0A2,X3), object(command,0A3,X3),
evt (copy,E4, [X3,X1])

As a result, all the different types of interrogative sentences must be treated as
particular cases in the several stages of the logical form generation, especially
for finding the sentence head, the subject, and the objects.

6Since these examples correspond to questions, the variables are represented as Prolog
variables and there is no holds predicate. The MLF of a question eventually converts into a
Prolog query (Section 2.6).

148

ANOWER EXTRKAC TITUN UoSING A DEFENDENCY GRAVMIVMIAK IN EATRKANOS

4.5. The verbal group

LG uses several links to connect the words that make up the verbal group.
The subject attaches to the first of the words, and the objects and modifiers
attach to any of the words in the verbal group. Consider the following examples:

(23) John has quickly been reading the book

PPf Os

Wd ,4.Ss § g—EL Pg Ds ¢
///// John has quickly been reading the book
holds(e5), object(’John’,o0al,x1), evt(read,eb, [x1,x7]1),

object (book,0a2,x7), prop(quickly,p2,e5)

(24) John has been quickly reading the book

Pg Os
Wd L4 Ss o PPE [Em | Ds |
///// John has been quickly reading the book
. MLF as in (23)

The attachment of the subject in (23) and (24) is to the auxiliary verb has,
whereas the object attaches to the main verb reading, and the adverb quickly
attaches to the verbal group member on its right. Because of the different
attachments to different parts of the verbal group, one would say that there is
no real head in the verbal group. For processing reasons, we decided to give
a direction of dependency from the auxiliary on the left (the one to which the
subject attaches) to the main verb. We have done this so that the anaphora
resolution module encounters fewer difficulties in its syntactic tests. Still, for
computing the logical form, we effectively consider all the components of the
whole verbal group as possible attachment places for the dependents. This
treatment is therefore akin to Tesniéere’s consideration of the whole verbal group
as a single nucleus (Section 3.1.1).

4.6. Predicative adjectives
Predicative adjectives are linked to the copular verb by the link Pa:

(25) the password is valid

Wd
Ds Ss Pa

p— ¢+
///// the password is valid
holds(p4), object(password,oal,x2), prop(valid,p4,x2)

Here, the adjective generates the main predicate of the MLF, and as such it
is asserted as a property of the subject, and this property holds. This is done
by treating the link Pa as one more of the links that bind the components of

149

oliego ViULLA, Gerold oCANcIDER, KOl oCLAVVIT TER, vicnael ACoo

the verbal group. Predicative adjectives are therefore integrated into the verbal
group, like in Tesniere’s approach.

There is another construction containing a predicative adjective, this time
without using a copular verb, where the predication refers to the object of the
verb. Still, the logical form must express the correct entity that is predicated
over. An example is:

(26) I found John interesting
Pa

Wd 4 SP*1 | 0x
///// 1 found John interesting

holds(e2), object(’I’,oal,x1), evt(find,e2,[x1,p4]l),
prop(interesting,p4,x3), object(’John’,0a2,x3)

As we can see, the linkage does not show a dependency between John
and the adjective interesting. It is remarkable that LG introduces a deep-
syntactic link in some embedded clauses (Section 4.3), but not in the example
above. The MLF generator must therefore find the argument John by exploring
the object of the verb found.

4.7. Passive and ditransitivity

The passive is a typical case where the surface structure does not match
the functional structure. For example, the two following sentences create the
same MLF:

(27) cp copies the files
Op
Wd Ss § Dmc
///// cp.com copies the files
holds(e2), object(cp,o0al,x1), object(command,oa2,x1),

evt(copy,e2, [x1,x4]), object(file,oa3,x4)

(28) the files are copied by cp
wd X
Dmc | SPX Pv MVp _ Js
///// the files are copied by cp.com
... MLFasin(27) ...

If there is a PP headed by by, then the PP object fills the first verb argu-
ment. If there is no such PP, the first verb argument remains anonymous:

(29) the files are copied
holds(e4), object(file,oal,x2), evt(copy,e4,[a2,x2])

150

ANOWER EXTRKAC TITUN UoSING A DEFENDENCY GRAVMIVMIAK IN EATRKANOS

We can see in (27) and (28) that the directed linkages keep the surface
structure. We must therefore consider the passive as a particular case where
the links S, 0, and MV must be dealt with differently from the active form.

Ditransitivity is another typical example where different surface structures
result in the same logical form. As in the passive, LG generates completely
different linkages. ExtrAns must consider these different possibilities when
building the MLF.

4.8. Non-finite clauses

Non-finite clauses present the problem that one needs to find the correct
arguments of the verb in the embedded clause, since the deep-syntactic links
are not expressed by LG for these cases. For example, here are two control
and raising sentences with their MLFs:

(30) the user forces the program to quit

T0o
Wd . Os
Ds Ss Ds X) I

/1117 tTIIe user forces the program to quit
holds(e3), object(user,oal,x2), evt(force,e3, [x2,e7]),
evt(quit,e7, [x5]), object(program,oa2,x5)

(31) the file is expected to be deleted
Wd X
Ds Ss Pvf TOf T Pv

///// the file is expected to be deleted
holds(e4), object(file,oal,x2), evt(expect,e4,[ad,e7]),
evt (delete,e?, [a2,x2])

Generally, the subject of the main clause is the subject of the non-finite
clause, except when the subject of the embedded clause is determined by
other means. For example, (30) specifies that the subject of the non-finite
clause is the program. However, the resulting directed linkage may lead to
misunderstandings, since the program is treated as an object of the main verb
forces. The link TOo (note the subtype o) specifies that the object of the main
verb is actually the functional subject of the non-finite verb quit. LG tries to in-
directly express the deep-syntactic link without risking breaking the projectivity
principle. The logical form generator must therefore follow the links back until
the subject is found, or store the potential subjects in temporary variables. We
found it more convenient to do the latter, so that we do not have to trace back
the links. Note that the logical form needs to place the agent, not the subject,
in the first argument of the verb. Therefore, all the appropriate rules for the
passive must apply to both the main clause and the non-finite clause (31).

The following is a list of sentences with intentional PPs. Intentional PPs
can be recognised on the basis of the syntactic structure (subtype i in MVi in
these examples). Consequently, their MLFs contain a predicate purpose:

151

oliego ViULLA, Gerold oCANcIDER, KOl oCLAVVIT TER, vicnael ACoo

(32) the lock is removed to unblock the program

Wd Os

p .
Ds Ss Pv UV 0 T Ds |

- * Al >t
///// the lock is removed to unblock the program

holds(e4), object(lock,oal,x2), evt(remove,e4,[a3,x2]),
purpose (e4,e6), evt(unblock,e6, [a3,x8]),
object (program,oa2,x8)

(33) the files must be closed for the program to terminate
ﬁMVi

Js

oP o Ix Pv [MVp Ds o i I

T T T
must be closed for the program to terminate
holds(e5), object(file,oal,x2), evt(close,eb, [a3,x2]),

purpose(e5,e10), evt(terminate,el0, [x8]),

object (program,oa2,x8)

Now, it is the agent of the main clause which becomes the subject of the
non-finite clause, as we can see in the case of a passive such as (32), unless,
of course, the subject is specified (33). Note again that one needs to find the
subject in (33) outside the embedded clause. The reason is that the linkage is
kept at a surface level, and therefore the PP for the program is left attached to
the main clause, very much like in the case of the agent in a passive.

4.9. Sentence openers

Sentence openers present one more case where LG fails to provide the
correct dependency. Sentence openers attach to the head of the sentence, but
LG typically designates the subject as the head of the sentence. As a result,
the openers attach to the subject, not to the main verb. The current version
of ExtrAns does not correct the attachment in the directed linkage. Instead,
the event introduced by the main verb is specified in the parameter list of the
routine that processes the openers.

The link used to mark a sentence opener (C0) does not show a direction
of dependency. This is so because, given that the link connects the wrong
words, other modules that rely on the direction of the dependency (such as the
anaphora resolution module) can become confused.

An additional problem is that there is one link type only, namely CO, to
mark a sentence opener, but there are many types of openers. The various
types of openers can sometimes be distinguished by means of the link subtype
(the subindices, if there are any) but in some occasions the link subtype is not
known or it is not specific enough, and we need to look at the structure of the
opener itself to find out what type of opener it is. Some examples where no
link subtypes are provided follow:

152

ANOWER EXTRKAC TITUN UoSING A DEFENDENCY GRAVMIVMIAK IN EATRKANOS

(34) automatically, the process stops

° Wd
COo
< Xc ' , Ds Ss '

///// automatically , the process stops

holds(e5), object(process,oal,x4), evt(stop,eb, [x4]),
prop (automatically,pl,e5)

(35) to remove the file, press y

o Wi
co
Xca . Xd
Os
///// to remove the file , press y.sym

holds(e6), object(hearer,oal,h), evt(press,e6,[h,x7]),
object(y,o0a2,x7), object(symbol,oa3,x7), purpose(e6,e2),
evt (remove,e2, [h,x4]), object(file,oa4,x4)

The following examples show the use of non-finite clauses as sentence
openers:

(36) run with the wrong arguments, the process crashed

Wd
COp
Xc o
Jp
Dmc b
MVp A | Ds Ss
///// run with the wrong arguments , the process crashed

holds(e9), object(process,oal,x8), evt(crash,e9, [x8]),
evt(run,el, [a3,x8]), with(el,x5), object(argument,oa2,x5),
prop (wrong,p4,x5)

(37) printing a message, the process quits

. Wd
COp
Xc o
Os
Ds , Ds Ss
. . ' .
///// printing a message , the process quits

holds(e7), object(process,oal,x6), evt(quit,e7,[x6]),
evt (print,el, [x6,x3]), object(message,oa2,x3)

As in any non-finite clause, one must find the arguments of the verb.
The general rule is, “the subject of the main clause is also the subject of the

153

oliego ViULLA, Gerold oCANcIDER, KOl oCLAVVIT TER, vicnael ACoo

opener”. One must also keep in mind that a past participle generally — though
not always (Quirk R. et al. 1972) — marks a passive (36), and that a present
participle marks an active (37).

CONCLUSION

The current implementation of ExtrAns converts LG’s syntactic analysis
of unedited document sentences and user queries into the MLFs needed for
the AE task. LG being a dependency-based system, we have shown that it
is possible to build a practical system that relies on a dependency structure
to create a logical form. The structure given by LG, however, fails to be func-
tional (as DGs could be), and some link attachments and labels are difficult
to interpret. This is the consequence of taking full advantage of fast project-
ive parsers, and considering only the surface-syntactic structure as opposed
to a deeper functional structure. As a result, the translation of LG structures
into logical forms becomes more complex than it would be for purely functional
structures, but remains feasible.

REFERENCES

BAUMGARTNER K. (1970) : “Konstituenz und Dependenz. Zur Integration der beiden
grammatischen Prinzipien.”, in Vorschlédge fiir eine strukturale Grammatik des
Deutschen, H. Steger (ed.), Darmstadt, Wissenschaftliche Buchgesellschatft.

BRILL Eric & RESNIK Philip (1994) : “A rule-based approach to prepositional phrase
attachment disambiguation”, in Proc. COLING '94, Kyoto, pp. 998-1004.

BROKER Norbert (1998a) : “How to define a context-free backbone for DGs: Imple-
menting a DG in the LFG formalism”, in Proc. of the COLING-ACL'98 workshop
“Processing of Dependency-based Grammars”, S. Kahane & A. Polguére (eds.),
pp. 29-38, Montreal.

BROKER Norbert (1998b) : “A projection architecture for dependency grammars and
how it compares to LFG”, in Proc. LFG 98, M. Butt & T. H. King (eds.), University
of Queensland, Brisbane.

BUNT Harry & VAN HORCK Arthur (eds.) (1996) : Discontinuous Constituency, Berlin,
Mouton de Gruyer.

COOK Vivian & NEWSON Mark (1996) : Chomsky’s Universal Grammar, Oxford,
Blackwell, 2nd édition.

COVINGTON Michael A. (1990) : “Parsing discontinuous constituents in dependency
grammar”, Computational Linguistics, vol. 16, pp. 234-237.

COVINGTON Michael A. (1992) . GB Theory as Dependency Grammar, Rapport
technique n® Al-1992-03, Athens, University of Georgia.

COVINGTON Michael A. (1994) : An Empirically Motivated Reinterpretation of De-
pendency Grammar, Rapport technique n® Al-1994-01, The University of Geor-
gia.

DALRYMPLE Mary, KAPLAN Ronald M., MAXWELL John T. & ZAENEN Annie (eds.)
(1995) : Formal Issues in Lexical-Functional Grammar, Stanford, CSLI.

154

ANOWER EXTRKAC TITUN UoSING A DEFENDENCY GRAVMIVMIAK IN EATRKANOS

DAVIDSON Donald (1967) : “The logical form of action sentences”, in The Logic of
Decision and Action, N. Rescher (ed.), Univ. of Pittsburgh Press, pp. 81-120.
DOWNEY Laura L. & TICE Dawn M. (1999) : “A usability case study using TREC and

ZPRISE”, Information Processing and Management,, vol. 35, n® 5, pp. 589-603.

FARRINGTON Gordon (1996) : “AECMA simplified English. An overview of the inter-
national aerospace maintenance language”, in Proc. CLAW96, Katholieke Uni-
versiteit Leuven, Leuven, pp. 1-21.

FELLBAUM Christiane (ed.) (1998) : WordNet: an electronic lexical database, Cam-
brige, MIT Press, Language, Speech, and Communication.

GAIFMAN H. (1965) : “Dependency systems and phrase-structure systems”, Inform-
ation and Control, vol. 8, pp. 304-337.

HAEGEMANN Lilian (1994) : Introduction to Government & Binding, Oxford, Basil
Blackwell.

HAYS David (1964) : “Dependency theory: A formalism and some observations”, Lan-
guage, vol. 40, pp. 511-525.

HELBIG Gerhard (1992) : Probleme der Valenz- und Kasustheorie. Konzepte der
Sprach- und Literaturwissenschaft, Tubingen, Niemeyer.

HELLWIG Peter (1986) : “Dependency unification grammar”, in Proc. COLING, Uni-
versity of Bonn, Bonn, pp. 195-198.

HOBBS Jerry R. (1985) : “Ontological promiscuity”, in Proc. ACL85, University of
Chicago, Association for Computational Linguistics, pp. 61-69.

HOBBS Jerry R. (1996) : “Monotone decreasing quantifiers in a scope-free logical
form”, in Semantic Ambiguity and Underspecification, K. van Deemter & S. Peters
(eds.), Stanford, CSLI Publications, chap. 3, pp. 55-76.

HUDSON Richard (1996) : “Word grammar”, in Concise Encyclopedia of Syntactic
Theories, K. Brown & J. Miller (eds.), Oxford, Elsevier, pp. 368-372.

HUMPHREYS Kevin, GAIZAUSKAS Rob, CUNNINGHAM Hamish & AZZAM Saliha
(1996) : GATE: VIE Technical Specifications, Rapport technique, University of
Sheffield, ILASH, Included in the documentation of GATE 1.0.0.

JARVINEN Timo & TAPANAINEN Pasi (1997) : A Dependency Parser for English,
Rapport technique n® TR-1, Helsinki, Department of Linguistics, University of
Helsinki.

KAHANE Sylvain, NASR Alexis & RAMBOW Owen (1998) : “Pseudo-projectivity: A
polynomially parsable non-projective dependency grammar”, in Proc. COLING-
ACL'98, Université de Montréal.

LANDMAN Fred (1991) : Structures for Semantics, Dordrecht, Kluwer.

LAPPIN Shalom & LEASS Herbert J. (1994) : “An algorithm for pronominal anaphora
resolution”, Computational Linguistics, vol. 20, nO 4, pp. 535-561.

LEWIS David D. & SPARCK JONES Karen (1996) : “Natural language processing for
information retrieval”, Communications of the ACM, vol. 39, n© 1, pp. 92-101.
LOMBARDO Vincenzo & LESMO Leonardo (1998) : “Unit coordination and gapping in
dependency theory”, in Processing of Dependency-Based Grammars; proceed-
ings of the workshop. COLING-ACL, S. Kahane & A. Polguere (eds.), Montreal.

MARCUS M., SANTORINI B. & MARCINKIEWICZ M. (1993) : “Building a large annot-
ated corpus of English: the Penn Treebank”, Computational Linguistics, vol. 19,
n® 2, pp. 313-330.

155

oliego ViULLA, Gerold oCANcIDER, KOl oCLAVVIT TER, vicnael ACoo

MCCORD Michael, BERNTH Arendse, LAPPIN Shalom & ZADROZNY WIlodek
(1992) : “Natural language processing within a slot grammar framework”, Inter-
national Journal on Artificial Intelligence Tools, vol. 1, n® 2, pp. 229-277.

MEL'CUK Igor (1988) : Dependency Syntax: Theory and Practice, State University of
New York Press.

MOLLA Diego & HESS Michael (2000) : “Dealing with ambiguities in an answer ex-
traction system”, in Workshop on Representation and Treatment of Syntactic Am-
biguity in Natural Language Processing, Paris, pp. 21-24.

MOLLA Diego, BERRI Jawad & HESS Michael (1998) : “A real world implementation
of answer extraction”, in Proc. of the 9th International Conference and Workshop
on Database and Expert Systems. Workshop “Natural Language and Information
Systems” (NLIS’98), Vienna, pp. 143-148.

MONTAGUE Richard (1973) : “The proper treatment of quantification in ordinary Eng-
lish”, in Approaches to Natural Language, K. J. J. Hintikka, J. Moravcsic & P.
Suppes (eds.), Dordrecht, Reidel, pp. 221-242.

NEUHAUS P. & BROKER N. (1997) : “The complexity of recognition of linguistically
adequate dependency grammars”, in Proc. ACL/EACL'97, Madrid.

O’CONNOR John (1975) : “Retrieval of answer sentences and answer-figures from
papers by text searching”, Information Processing & Management, vol. 11, n©
5/7, pp. 155-164.

PARSONS Terence (1985) : “Underlying events in the logical analysis of English”,
in Actions and Events: Perspectives on the philosophy of Donald Davidson, E.
Lepore & B. P. McLaughlin (eds.), Oxford, Blackwell, pp. 235-267.

POLLARD Carl (1994) : Head-Driven Phrase Structure Grammar, Chicago, Chicago
University Press.

QUIRK Randolph, GREENBAUM Sidney, LEECH Geoffrey & SVARTVIK Jan (1972) :
A Grammar of Contemporary English, Harlow, Longman.

ROMACKER Martin & HAHN Udo (1999) : “On the semantic linkage of dependency
relations and conceptual relations”, in Proc. NLDB’99, G. Friedl & H. C. Mayr
(eds.), Klagenfurt, pp. 77-90.

SCHNEIDER Gerold (1998) : A Linguistic Comparison of Constituency, Dependency
and Link Grammar, Master’s thesis, University of Zurich, Unpublished.

SGALL Petr, HAJICOVA Eva & PANEVOVA Jarmilla (1986) : The Meaning of the
Sentence in Its Semantic and Pragmatic Aspects, Dordrecht, Reidel.

SLEATOR Daniel D. & TEMPERLEY Davy (1993) : “Parsing English with a link gram-
mar”, in Proc. Third International Workshop on Parsing Technologies, pp. 277-
292.

SUTCLIFFE Richard F. E., KOCH Heinz-Detlev & MCELLIGOTT Annette (eds.)
(1996) : Industrial Parsing of Software Manuals, Amsterdam, Rodopi.

TESNIERE Lucien (1959) : Eléments de Syntaxe Structurale, Paris, Klincksieck.

TREC-8 (1999), “Call for participation Text REtrieval Conference 1999 (TREC-8)",
http://trec.nist.gov/cfp.html.

156

